Arithmetic equivalence of modular curves and Shimura varieties
模曲线和 Shimura 簇的算术等价
基本信息
- 批准号:2272087
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is in number theory and algebraic geometry, and the interface at which these topics meet. At the centre of the project are Shimura varieties. Shimura varieties are geometric objects that encode a great deal of arithmetic and geometric information. They are parameter spaces for central objects in mathematics, namely, abelian varieties, and the setting for many important aspects of number theory, not least the Langlands Programme.We will be interested in several natural questions pertaining the geometry and arithmetic of Shimura varieties. The first of these questions relates to zeta functions of Shimura varieties. Zeta functions are analytic objects that can be attached to many different mathematical structures and encode a variety of properties. It is known that non-isomorphic Shimura varieties may possess the same zeta function, and explicit examples have been found. We intend to explore these examples and construct new families of non-isomorphic Shimura varieties sharing the same zeta function.The second of these questions relates to so-called "unlikely intersections" in Shimura varieties. There is now a well-established area of research centred around the distribution of so-called special subvarieties in a Shimura variety, in other words, how smaller Shimura varieties sit inside a larger ambient Shimura variety. New results from model theory have given rise to new methods through which to investigate these questions, and we intend to apply these methods to unresolved problems of unlikely intersections that now appear tractable.The third of these questions relates to geometric and arithmetic properties of Shimura varieties, many of which have relevance for the second question above. We intend to investigate various problems relating to the degrees of so-called Hecke correspondences, the fields of definition of special subvarieties, and the complexities of special subvarities, all of which are technical ingredients in unlikely intersections, but also interesting pieces of mathematics in their own right.The methodology for studying the above questions is centred in the development and application of new tools, from model theory, number theory, and algebraic geometry, as well as pursuing new connections between different branches of mathematics. The project will require the student to learn a substantial amount of new mathematics, as well as state of the art methodologies in these specific areas of research, in order to enable him to obtain new results.
这个项目是在数论和代数几何,以及接口,这些主题满足。该项目的核心是志村品种。Shimura变种是编码大量算术和几何信息的几何对象。它们是数学中中心对象的参数空间,即阿贝尔簇,以及数论许多重要方面的背景,尤其是朗兰兹纲领。我们将对有关志村簇的几何和算术的几个自然问题感兴趣。这些问题中的第一个涉及志村品种的zeta函数。Zeta函数是可以附加到许多不同的数学结构并编码各种属性的分析对象。已知非同构的Shimura簇可能具有相同的zeta函数,并且已经发现了明确的例子,我们打算探索这些例子并构造新的具有相同zeta函数的非同构的Shimura簇族。第二个问题涉及Shimura簇中所谓的“不可能交叉”。现在有一个完善的研究领域,集中在志村品种中所谓的特殊子品种的分布上,换句话说,较小的志村品种如何位于较大的环境志村品种中。模型论的新结果产生了新的方法来研究这些问题,我们打算把这些方法应用到那些不太可能相交的未解决的问题上,这些问题现在看来是易于处理的。第三个问题涉及志村变种的几何和算术性质,其中许多与上面的第二个问题有关。我们打算研究与所谓的Hecke对应的程度有关的各种问题,特殊子变种的定义领域,以及特殊子变种的复杂性,所有这些都是不太可能的交叉点的技术成分,但它们本身也是有趣的数学作品。研究上述问题的方法论集中在新工具的开发和应用上,从模型论,数论,代数几何,以及追求数学不同分支之间的新联系。该项目将要求学生学习大量的新数学,以及在这些特定研究领域的最先进的方法,以使他能够获得新的成果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Formulating microstructural equivalence: A route to consistent scale-up of medicine manufacture
制定微观结构等效性:药物生产持续扩大规模的途径
- 批准号:
EP/Z532988/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Finding equivalence between natural and artificial intelligences
寻找自然智能和人工智能之间的等价性
- 批准号:
DP240100400 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Doctoral Dissertation Research in Economics: Two Experiments on the Behavioral Equivalence of Dirty Faces Games
经济学博士论文研究:脏脸游戏行为等价性的两个实验
- 批准号:
2243268 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Maximizing the reach of universal child sexual abuse prevention: An equivalence trial
最大限度地扩大普遍预防儿童性虐待的范围:等效试验
- 批准号:
10739900 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Testing the Equivalence Principle in Quantum Regime and Exploring the Quantum Nature of Gravity
测试量子体系中的等效原理并探索引力的量子本质
- 批准号:
23H00106 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)
Classification and invariants for Borel equivalence relations
Borel 等价关系的分类和不变量
- 批准号:
2246746 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Testing the weak equivalence principle with antimatter via Rydberg-Atom Interferometry
通过里德堡原子干涉仪测试反物质的弱等效原理
- 批准号:
2868587 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Analytic group properties that are von Neumann equivalence invariant
冯·诺依曼等价不变的解析群属性
- 批准号:
22KF0182 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
The Quantum Equivalence Principle and Quantum Coordinate Systems
量子等效原理和量子坐标系
- 批准号:
RGPIN-2020-05518 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual