Quantum Variational Principle and Discrete Integrable Systems
量子变分原理与离散可积系统
基本信息
- 批准号:2274377
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project deals with a novel formulation of the variational description of integrable systems known by the name of Lagrangian multiform theory, due to Lobb & Nijhoff (2009). This new approach has been successfully shown to be the pertinent description of integrable systems exhibiting the so-called multidimensional consistency property, and has been demonstrated to hold for a large number of integrable systems both in the continuous case of PDEs as well as the discrete case of systems on the space-time lattice. The main aim is to consider this theory on the quantum level, and first steps in this direction have already been undertaken by King & Nijhoff (2017). Whereas those results pertain mostly to the linear case of quadratic Lagrangians, the insights it gave into the quantum variational principle in terms of Feynman propagators are expected to hold for the nonlinear case of integrable Lagrangians as well. There are several models that qualify as a testing ground for the quantum variational principle, one class of which are the Calogero-Moser type models which the applicant has been investigating in his MmathPhys project from a conventional quantum theory point of view. Thus, these models have all the good signatures as a laboratory to expand the ideas of the multiform theory: they possess a well understood conventional quantum theory, with known class of special functions as eigenfunctions of the Hamiltonian, while the classical multiform structure was established by Yoo-Kong, Lobb & Nijhoff (2011), and they allow exact solutions on the classical level both in discrete as well as continuous time. The project will seek to establish the quantum multiform structure for the Feynman propagators, and thus probe into the more challenging issues, such as the ones regarding the Feynman path integral measure. If successful these results will be expanded to other quantum models such as the integrable quantum mappings (Nijhoff, Capel & Papageorgiou, 1992) arising as finite-dimensional reductions of integrable lattice systems.
由于Lobb&Nijhoff(2009),该项目涉及一种被称为拉格朗日多形理论的可积系统的变分描述的新形式。这种新的方法已经被成功地证明是对具有所谓多维一致性的可积系统的适当描述,并且已经被证明对大量可积系统都是成立的,无论是在连续的偏微分方程组的情况下还是在时空格子上的离散系统的情况下。主要目的是在量子水平上考虑这一理论,King&Nijhoff(2017)已经朝着这个方向迈出了第一步。虽然这些结果主要涉及二次拉格朗日量的线性情况,但它对费曼传播子形式的量子变分原理的见解预计也适用于可积拉格朗日量的非线性情况。有几个模型有资格作为量子变分原理的试验场,其中一类是Calogero-Moser类型的模型,申请人一直在从传统量子理论的角度在他的MmathPhys项目中进行研究。因此,这些模型具有作为扩展多形理论思想的实验室的所有良好特征:它们拥有众所周知的传统量子理论,具有已知的特殊函数类作为哈密顿量的本征函数,而经典多形结构是由Yoo-Kong,Lobb&Nijhoff(2011)建立的,它们允许在离散和连续时间的经典水平上的精确解。该项目将寻求建立费曼传播子的量子多态结构,从而探索更具挑战性的问题,例如关于费曼路径积分测量的问题。如果成功,这些结果将被推广到其他量子模型,例如作为可积晶格系统的有限维约化而产生的可积量子映射(Nijhoff,Capel&Papageorgiou,1992)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Development of an integral equation theory satisfying the variational principle and accurate for long-range potential systems
满足变分原理且对长程势系统准确的积分方程理论的发展
- 批准号:
23K04666 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on the double variational principle for mean dimension of dynamical systems
动力系统平均维数的双变分原理研究
- 批准号:
21K03227 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Clarification of the mechanisms of rotation and dissipative structure in chiral liquid crystals by variational principle
利用变分原理阐明手性液晶的旋转和耗散结构机制
- 批准号:
18K13520 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Interfacial tension from the view point of variational principle
从变分原理角度看界面张力
- 批准号:
26520205 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Formulation of variational principle for fractional kinetics and its applications
分数阶动力学变分原理的表述及其应用
- 批准号:
26400391 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Formulations of curves and surfaces for aesthetic design based on variational principle and investigations of their performances
基于变分原理的美学设计曲线曲面公式及其性能研究
- 批准号:
25289021 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study of inequalities and variational principle in free probability theory
自由概率论中的不等式和变分原理研究
- 批准号:
21540208 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Three-dimensional motion of a vortex tube and quest for its optimality based on topological variational principle
基于拓扑变分原理的涡管三维运动及其最优性求解
- 批准号:
19540406 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
An analysis of dissipative phenomena and intermittency in complex systems via a generalized variational principle
通过广义变分原理分析复杂系统中的耗散现象和间歇性
- 批准号:
19540109 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Variational Principle Based Study of Random Front Speeds
基于变分原理的随机前沿速度研究
- 批准号:
0506766 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant