Irradiance Forecasting through Analysis of Sky Images
通过天空图像分析进行辐照度预测
基本信息
- 批准号:2275535
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The pressing need to reduce global emissions in the next decades is forcing countries to strive for a more sustainable model of development. Besides introducing necessary demand-side mitigation options, international panels recommend that governments carry out a deep energy transition, leading to a gradual decarbonisation of the supply-side. For this reason, a growing number of countries and energy companies are investing in more sustainable sources of energy, and in particular in solar energy, which is expected to become increasingly prevalent in renewable energy mixes.The production of electricity from solar panels suffers, however, from high variability due to the discontinuity of the energy generation caused by sparse cloud cover. This currently limits the full development of solar energy. To address this problem, we would like to forecast irradiance (solar flux), and more broadly electricity production, from a few minutes to several months ahead. This would improve the following: plant and grid operations, quality of the power supply, grid planning, network balance, production optimisation and electricity trading.With this in mind, the analysis of ground-based images (180 sky images taken by hemispherical cameras on the ground) is a promising starting point for local short-term irradiance forecasts in a 20 minutes time window, over an area imposed by the skyline.Different approaches can be taken to such forecasting of irradiance from sequences of these images taken at fixed time intervals. One existing method is to generate, at each time step, a 3D model of the cloud cover from sky images and estimate future changes from observed displacements. Physical models are then exploited to approximate irradiance components at a given point from the predicted shadow on the ground.This hand-crafted approach does, however, involve some approximations which undermine the quality of the forecast. The main issue being the difficulty of integrating the complexity of cloud structure and cloud movement into models.The approach we will initially adopt involves the application of state-of-the-art Machine Learning techniques to tackle this forecasting problem. The understanding of the scene will be provided by Convolutional Neural Networks (CNN), which have proved to be a very efficient tool in computer vision for extracting relevant features from images at different levels of abstraction. The prediction step will be achieved by a Recurrent Neural Network (RNN), which enables the model to extract additional information from sequences, i.e. adds memory to the model. The idea is also to quantify forecast uncertainties from these deep neural networks through, for example, MC-Dropout or Gaussian Processes. Recently, a similar approach was successfully applied to forecasting rain forest conditions from satellite images.The forecasting power of the model will be further improved to increase its temporal and spatial validity by using other tools from the fields of Statistics and Machine Learning and by exploiting additional data such as meteorological data or satellites images.
未来几十年减少全球排放的迫切需要迫使各国努力实现更可持续的发展模式。除了引入必要的需求侧缓解方案外,国际专家组还建议各国政府进行深度能源转型,从而实现供应侧的逐步脱碳。因此,越来越多的国家和能源公司正在投资于更可持续的能源,特别是太阳能,预计太阳能在可再生能源组合中将越来越普遍,但由于云层稀疏造成发电不连续,太阳能电池板发电的变化很大。这就限制了太阳能的全面发展。为了解决这个问题,我们希望预测辐照度(太阳能通量),以及更广泛的电力生产,从几分钟到几个月。这将改善以下方面:工厂和电网运营、供电质量、电网规划、网络平衡、生产优化和电力交易。考虑到这一点,(180张由地面半球相机拍摄的天空图像)是在20分钟时间窗内进行局部短期辐照度预报的一个有希望的起点,可以采用不同的方法来根据以固定时间间隔拍摄的这些图像的序列来预测辐照度。一种现有的方法是在每个时间步从天空图像生成云层的3D模型,并从观测到的位移估计未来的变化。然后利用物理模型从预测的地面阴影中近似计算给定点的辐照度分量。然而,这种手工制作的方法确实涉及一些影响预测质量的近似值。主要的问题是难以将云结构和云移动的复杂性整合到模型中。我们最初采用的方法涉及应用最先进的机器学习技术来解决这个预测问题。卷积神经网络(CNN)将提供对场景的理解,它已被证明是计算机视觉中非常有效的工具,用于从不同抽象层次的图像中提取相关特征。预测步骤将通过递归神经网络(RNN)实现,该网络使模型能够从序列中提取额外的信息,即为模型添加记忆。我们的想法也是通过MC-Dropout或高斯过程等方式量化这些深度神经网络的预测不确定性。最近,一种类似的方法已成功地用于从卫星图像预测雨林状况,将通过使用统计学和机器学习领域的其他工具以及利用气象数据或卫星图像等其他数据,进一步提高该模型的预测能力,以提高其时间和空间有效性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Elucidating electricity market mechanisms through sophisticated forecasting methods: integrating empirical insights from Japan and Europe
通过复杂的预测方法阐明电力市场机制:整合日本和欧洲的经验见解
- 批准号:
22KK0217 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Novel High Performance Wave Energy Converters with advanced control, reliability and survivability systems through machine-learning forecasting
通过机器学习预测,新型高性能波浪能转换器具有先进的控制、可靠性和生存能力系统
- 批准号:
EP/V040561/1 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Research Grant
OPUS: Enhancing capabilities through synthesis for forecasting tree species population trajectories under changing environments
OPUS:通过综合增强预测变化环境下树种种群轨迹的能力
- 批准号:
2041933 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Enhancing forecasting flood inundation mapping through data assimilation
通过数据同化加强洪水预测
- 批准号:
2438362 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Studentship
SBIR Phase II: Autonomous harvesting, mapping, and forecasting for fresh produce through application of robotics, computer vision, and machine learning
SBIR 第二阶段:通过应用机器人、计算机视觉和机器学习对新鲜农产品进行自主收割、绘图和预测
- 批准号:
2023742 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Cooperative Agreement
Improving Weather Forecasting through non-Gaussian Data Assimilation with Machine Learning
通过机器学习的非高斯数据同化改进天气预报
- 批准号:
2033405 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
SBIR Phase I: Autonomous harvesting, mapping, and forecasting for fresh produce through application of robotics, computer vision, and machine learning
SBIR 第一阶段:通过应用机器人、计算机视觉和机器学习对新鲜农产品进行自主收获、绘图和预测
- 批准号:
1843162 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Coastal Resilience to flooding Impact through relocatable Storm surge forecasting Capability for developing nations (C-RISC)
沿海地区的洪水恢复能力 通过可重新定位的风暴潮预报的影响 发展中国家的能力 (C-RISC)
- 批准号:
NE/R009406/1 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grant
Improving Earthquake Forecasting and Seismic Hazard Analysis Through Extreme-Scale Simulations
通过极端规模模拟改进地震预报和地震灾害分析
- 批准号:
1713792 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
Enhancement of Manitoba Hydro's physically-based inflow and flood forecasting capabilities through code optimization and parallel execution
通过代码优化和并行执行增强马尼托巴水电公司基于物理的流入和洪水预报能力
- 批准号:
501861-2016 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Engage Grants Program