Metasurface-enabled beam shaping for sustainable super-resolution focusing devices

用于可持续超分辨率聚焦设备的超表面光束整形

基本信息

  • 批准号:
    2281193
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

For decades the controlling of light matter interaction has been of great interest to both the scientific and the industrial communities. The propagation of waves can be manipulated through the use of various materials and/or geometries of the medium where the wave is propagating.Since the early 2000's metamaterials (MTMs) and their 2D counterpart, metasurfaces (MTSs), have been proposed as a means of achieving electromagnetic (EM) responses which natural materials are not capable of achieving (Engeta N, 2006). However, despite these unnatural effects they are inspired by nature being composed of periodically arranged small metallic-dielectric geometries which are smaller than the incident wavelength. This results in the wave observing a homogeneous medium rather than the individual geometries used to create them. This enables the ability to tailor the EM properties of such artificial media by properly engineering the materials, arrangement and geometries used. In doing so, the use of MTMS and MTSs opens new paths to improve the performance of devices in a wide range of applications such as antennas and sensors.In this realm, the development of MTMs has been of great benefit to focusing devices such as lens-antennas and imaging applications. However, such applications have been hindered due to their narrow band designs. This causes them to be difficult for applications where broadband responses are required. Nowadays, there is a worldwide commitment to design devices as much reliable as possible and with reconfigurable properties. This is due to the fact that there is a growing amount of e-waste (electronic waste) being produced globally because of the materials involved in their design: mainly metals and dielectrics (plastics, ceramics etc.). These materials take a considerable time to degrade, from hundreds to thousands of years. In this context, MTMs and MTSs suffer from the same issue because they are basically made with the same raw materials. Therefore, it is important to address the possibility of environmental issues in the early stages of development of these artificial electromagnetic media at this stage where they are still under development.This project will be inspired by the exciting opportunities presented by the incredibly broad uses of MTMs and MTSs and working to make them reconfigurable while using sustainable and environmentally friendly technologies. I will be studying the governing physics laws with regards to metamaterials to gain an understanding of the EM responses required and then designing these materials to be demonstrated experimentally. All the while a wide range of reconfigurable and sustainable materials will be tested for their application into these designs as to alleviate the issues of technological waste. This will lead to the development of ultra-compact, low-costing and super-resolution imaging applications using biodegradable materials while having the capability of being reconfigured. These imaging applications will be developed at different frequency ranges with emphasis to the Terahertz frequency range due the opportunities it offers to fields such as high-speed communications and biomedical imaging.
几十年来,控制轻物质相互作用一直是科学界和工业界非常感兴趣的问题。波的传播可以通过使用传播波的介质的各种材料和/或几何形状来操纵。自2000年初以来,S超材料(MTM)和它们的2D对应物超表面(MTSS)被提出作为一种实现自然材料无法实现的电磁(EM)响应的手段(Engeta N,2006)。然而,尽管有这些不自然的影响,它们的灵感来自于自然由周期性排列的小金属-介电几何图形组成,这些几何图形小于入射波长。这导致波观察到一个均匀的介质,而不是用来创建它们的各个几何图形。这使得能够通过适当地设计所使用的材料、排列和几何形状来定制这种人造介质的电磁特性。在这种情况下,MTMS和MTSS的使用为提高设备在天线和传感器等广泛应用中的性能开辟了新的途径。在这一领域,MTMS的发展对透镜天线和成像应用等聚焦设备具有极大的好处。然而,由于其窄带设计,这种应用受到了阻碍。这使得它们对于需要宽带响应的应用来说是困难的。如今,全世界都在致力于设计尽可能可靠和具有可重新配置特性的设备。这是因为全球产生的电子垃圾(电子垃圾)越来越多,因为它们的设计所涉及的材料:主要是金属和电介质(塑料、陶瓷等)。这些材料需要相当长的时间才能降解,从几百年到几千年。在这方面,MTM和MTSS面临着同样的问题,因为它们基本上是用相同的原材料制造的。因此,重要的是在这些人工电磁介质仍处于开发阶段的早期阶段解决环境问题的可能性。该项目将受到MTM和MTSS令人难以置信的广泛使用带来的令人兴奋的机会的启发,并努力使它们在使用可持续和环境友好的技术的同时进行重新配置。我将研究与超材料有关的主导物理定律,以了解所需的电磁响应,然后设计这些材料进行实验演示。与此同时,将对各种可重新配置和可持续材料进行测试,以将其应用于这些设计,以减轻技术浪费的问题。这将导致使用可生物降解材料的超紧凑、低成本和超分辨率成像应用的开发,同时具有重新配置的能力。这些成像应用将在不同的频率范围内开发,重点是太赫兹频率范围,因为它为高速通信和生物医学成像等领域提供了机会。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Plasmonic meniscus lenses.
  • DOI:
    10.1038/s41598-022-04954-0
  • 发表时间:
    2022-01-18
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Riley JA;Healy N;Pacheco-Peña V
  • 通讯作者:
    Pacheco-Peña V
Exploiting meniscus lenses for surface plasmons focusing
利用弯月透镜进行表面等离子体聚焦
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Riley J A
  • 通讯作者:
    Riley J A
Manipulating Surface Plasmons Propagation Using Ultra-Compact and Non-Dielectric Designs
Unidirectional transparency in epsilon-near-zero based rectangular waveguides induced by parity-time symmetry
  • DOI:
    10.1063/5.0076236
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    4
  • 作者:
    M. Nicolussi;J. Riley;V. Pacheco-Peña
  • 通讯作者:
    M. Nicolussi;J. Riley;V. Pacheco-Peña
Diffraction limited photonic hook via scattering and diffraction of dual-dielectric structures.
  • DOI:
    10.1038/s41598-021-99744-5
  • 发表时间:
    2021-10-13
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Pacheco-Peña V;Riley JA;Liu CY;Minin OV;Minin IV
  • 通讯作者:
    Minin IV
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Algorithm-Enabled Auto-Calibrating Quantitative Dual-Energy CT
支持算法的自动校准定量双能 CT
  • 批准号:
    10448987
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
A New EDS (X-ray) detector for the Laser-Enabled Focused Ion Beam
用于激光聚焦离子束的新型 EDS(X 射线)探测器
  • 批准号:
    RTI-2023-00551
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Tools and Instruments
Machine Learning-enabled Classification of Extracellular Vesicles Using Nanoplasmonic Microfluidics
使用纳米等离子微流体对细胞外囊泡进行机器学习分类
  • 批准号:
    10571515
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
EAGER: ML-enabled early warning of blockage and beam transitions in mobile, hybrid sub-6GHz/mmWave systems
EAGER:支持 ML 的移动混合 6GHz/毫米波系统中的阻塞和波束转换预警
  • 批准号:
    2122012
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Advancing Multi-Color EM via Direct Detector-enabled 4D-STEM
通过支持直接检测器的 4D-STEM 推进多色 EM
  • 批准号:
    10031737
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Advancing Multi-Color EM via Direct Detector-enabled 4D-STEM
通过支持直接检测器的 4D-STEM 推进多色 EM
  • 批准号:
    10684732
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Advancing Multi-Color EM via Direct Detector-enabled 4D-STEM
通过支持直接检测器的 4D-STEM 推进多色 EM
  • 批准号:
    10248396
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Spacer Enabled Robust Radiation Therapy (SERRT)
间隔器启用的稳健放射治疗 (SERRT)
  • 批准号:
    10177915
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
ALS Efficiently Networking Advanced Beam Line Experiments (ALS-ENABLE)
ALS 高效联网高级光束线实验 (ALS-ENABLE)
  • 批准号:
    9370112
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
ALS Efficiently Networking Advanced Beam Line Experiments (ALS-ENABLE)
ALS 高效联网高级光束线实验 (ALS-ENABLE)
  • 批准号:
    10201646
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了