Algorithm-Enabled Auto-Calibrating Quantitative Dual-Energy CT
支持算法的自动校准定量双能 CT
基本信息
- 批准号:10448987
- 负责人:
- 金额:$ 22.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-10 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:Algorithmic AnalysisAlgorithmsCationsClinicalContrast MediaDataDevelopmentDiagnosticDisease ManagementDoseEnsureEvaluationEvaluation StudiesHomeImageIntensive Care UnitsInterventional radiologyMeasurementMeasuresMetalsModificationMorphologic artifactsOperative Surgical ProceduresOrthopedicsOutcomeRadiation therapyResearchRewardsScanningSystemTechniquesTimeX-Ray Computed Tomographyalgorithm developmentarmclinical applicationcone-beam computed tomographydesigndisease diagnosisexperimental studyfootimage reconstructionimagerimaging capabilitiesimprovedinnovationprototypereconstructionsuccesstool
项目摘要
Project Summary/Abstract
The objective of the project is to develop auto-calibrating quantitative dual-energy CT (AC-QDECT) through
algorithm development for accurate, simultaneous reconstruction of images and spectra on cone-beam CT
(CBCT). Quantitative DECT (QDECT) is a recognized technique of significant clinical potential for improving
disease diagnosis and management, and is performed currently only on advanced diagnostic (Dx) CT in which
spectra must be estimated as a prior from separate measurements. There is little effort yet in developing non-
Dx QDECT systems such as CBCT for use in, e.g., surgery and radiation therapy (RT); a leading reason for
this is that accurate spectra cannot be measured/estimated readily in experiments in current CBCT imaging. In
CBCT with AC-QDECT capability proposed, both images and spectra are treated as unknowns on an equal
footing, and we develop a non-convex primal-dual (NCPD) algorithm simultaneously to yield images and
spectra only from data. We will also use the NCPD algorithm to enable AC-QDECT capability on CBCT with
innovative partial scanning configurations of clinical application significance. Finally, we will evaluate AC-
QDECT capability enabled on CBCT in extensive simulated- and real-data studies. The project hypothesis is
that CBCT with AC-QDECT capability can be enabled by use of the NCPD algorithm for yielding quantitatively
accurate images without spectra as a priori estimated from separate measurements. The specific aims of the
project are (1) to develop the NCPD algorithm for enabling AC-QDECT capability on CBCT and (2) to
prototype and evaluate the AC-QDECT capability proposed on CBCT. The project is built upon our success
research on the development of QDECT and CBCT tailored to applications growing rapidly in surgery, RT, and
orthopedics. The project outcome is the establishment of the feasibility of algorithm-enabled AC-QDECT
capability on CBCT, substantially expanding the application domain and utility of CBCT.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
XIAOCHUAN PAN其他文献
XIAOCHUAN PAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('XIAOCHUAN PAN', 18)}}的其他基金
Advanced iterative image reconstruction for digital breast tomosynthesis - Resubmission 01
用于数字乳腺断层合成的高级迭代图像重建 - 重新提交 01
- 批准号:
9978584 - 财政年份:2018
- 资助金额:
$ 22.83万 - 项目类别:
Advanced iterative image reconstruction for digital breast tomosynthesis - Resubmission 01
用于数字乳腺断层合成的高级迭代图像重建 - 重新提交 01
- 批准号:
10224861 - 财政年份:2018
- 资助金额:
$ 22.83万 - 项目类别:
36th Annual International Conference of the IEEE Engineering in Medicine and Biol
第 36 届 IEEE 医学和生物工程国际年会
- 批准号:
8720474 - 财政年份:2014
- 资助金额:
$ 22.83万 - 项目类别:
Digital Specimen Tomosynthesis for Volumetric Imaging of Lumpectomy Specimens
用于肿瘤切除标本体积成像的数字标本断层合成
- 批准号:
9085109 - 财政年份:2014
- 资助金额:
$ 22.83万 - 项目类别:
Digital Specimen Tomosynthesis for Volumetric Imaging of Lumpectomy Specimens
用于肿瘤切除标本体积成像的数字标本断层合成
- 批准号:
8766676 - 财政年份:2014
- 资助金额:
$ 22.83万 - 项目类别:
Development of Advanced C-arm Cone-Beam CT for the Treatment of Liver Cancer
先进C型臂锥束CT治疗肝癌的开发
- 批准号:
9305887 - 财政年份:2014
- 资助金额:
$ 22.83万 - 项目类别:
Development of Advanced C-arm Cone-Beam CT for the Treatment of Liver Cancer
先进C型臂锥束CT治疗肝癌的开发
- 批准号:
8616609 - 财政年份:2014
- 资助金额:
$ 22.83万 - 项目类别:
International Symposium on Biomedical Imaging: from Nano to Macro 2011 (ISBI2011)
生物医学成像国际研讨会:从纳米到宏观2011 (ISBI2011)
- 批准号:
8133639 - 财政年份:2011
- 资助金额:
$ 22.83万 - 项目类别:
31st Annual International Conference of IEEE Engineeering in Medicine and Biology
第 31 届 IEEE 医学和生物学工程国际会议
- 批准号:
7744371 - 财政年份:2009
- 资助金额:
$ 22.83万 - 项目类别:
Optimized Cone-Beam CT for Image-Guided Radiation Therapy
用于图像引导放射治疗的优化锥束 CT
- 批准号:
7317899 - 财政年份:2007
- 资助金额:
$ 22.83万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Continuing Grant