Distinction problems by Iwahori-Hecke algebras
Iwahori-Hecke 代数的区分问题
基本信息
- 批准号:2283617
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project falls within the ESPRC Algebra research area. The general subject area of this project is the representation theory of p-adic reductive groups, in the general framework of the local Langlands programme. Motivated by applications to automorphic forms, the aim of the project is to study certain distinction questions for smooth representations of p-adic groups or finite groups of Lie type. Consider a reductive p-adic or a finite group of Lie type G and a closed subgroup H of G and two smooth (complex) irreducible representations \pi of G and \sigma of H. The most basic case is when \sigma is the trivial representation. The question we are interested in is when Hom_H(\pi,\sigma) is non-zero and what its dimension is in the case that it is non-zero. In the most interesting cases, this dimension is equal to 0 or 1. This type of problem has a long history. A very classical example is when H is a maximal compact open subgroup of G, for example G=GL(n,Q_p) and H=GL(n,Z_p). The representations distinguished by this H are called (H-)spherical and the fact that the multiplicity space is at most one-dimensional follows from the fact that the spherical Hecke algebra H(G,H) of compactly supported functions of G which are H-biinvariant is abelian. Another famous example is the case of Whittaker (or generic) representations, in which case, H is the unipotent radical of a Borel subgroup (when G is quasisplit) and \sigma is a nondegenerate character of H [CS80].One particularly interesting case to consider is when \pi is a smooth representation of G with Iwahori fixed vectors. It turns out that the category of such representations is equivalent to the category of modules over Iwahori-Hecke algebras H(G,I) of compactly supported I-biinvariant functions. As a consequence, we can study such representations from the point of view of Iwahori-Hecke algebras. The main challenge that comes with this approach is transferring the questions we are studying about the smooth representations to the equivalent question in the Iwahori-Hecke algebras setting. The novelty in this research methodology is the emphasis of this algebraic approach from the point of view of Iwahori-Hecke algebras.There are multiple objectives that we could aim to reach in this project. For instance, one could try to generalise the results of [CS16] who consider representations with Whittaker models. In [CS16], G is a Chevalley group over a p-adic field, H is a unipotent radical of a Borel subgroup of G and \sigma is a non-degenerate character of H. The equivalent problem in the setting of the Iwahori Hecke algebra is to determine the simple modules whose restriction to the finite Hecke algebra contains the Steinberg module. Another objective could be to consider the example with G = GL(2n,\Q_p), H = SP(2n,\Q_p) and \sigma the trivial character, a case studied before via different methods in [OS07]. As a related toy example, one would have to consider the irreducible representations of the symmetric group whose restriction to the hyperoctahedral subgroup contains the trivial representation. More interestingly, insight should be obtained by considering the similar restriction problem for finite groups of Lie type over F_q. The most ambitious goal would be to find an Iwahori-Hecke algebra common framework which applies to a vast class of distinction problems, which include as particular cases the examples mentioned above.
这个项目属于ESPRC代数研究领域的福尔斯。该项目的一般主题领域是p进还原群的表示理论,在当地朗兰兹方案的一般框架。受自守形式应用的启发,该项目的目的是研究p进群或李型有限群的光滑表示的某些区别问题。考虑一个约化的p进群或有限的李型群G和G的一个闭子群H以及G的两个光滑(复)不可约表示\pi和H的\sigma。最基本的情况是\sigma是平凡的表示。我们感兴趣的问题是,当Hom_H(\pi,\sigma)非零时,它的维数是多少。在最有趣的情况下,这个维度等于0或1。这类问题由来已久。一个非常经典的例子是当H是G的极大紧开子群时,例如G=GL(n,Q_p)和H=GL(n,Z_p)。由这个H区分的表示被称为(H-)球面的,并且重数空间至多是一维的这一事实是从G的紧支撑函数的球面Hecke代数H(G,H)是阿贝尔的这一事实得出的,这些函数是H-双不变的。另一个著名的例子是Whittaker(或一般)表示的情况,在这种情况下,H是Borel子群的幂单根(当G是拟分裂的),\sigma是H的非退化特征标[CS 80]。一个特别有趣的情况是当\pi是G的岩堀不动点的光滑表示时。证明了这类表示的范畴等价于Iwahori-Hecke代数H(G,I)上紧支撑I-双不变函数的模范畴.因此,我们可以从Iwahori-Hecke代数的角度来研究这样的表示。这种方法带来的主要挑战是将我们正在研究的关于光滑表示的问题转移到岩堀-赫克代数设置中的等价问题。本研究方法的新奇在于从岩堀-赫克代数的角度强调了这种代数方法。在本项目中,我们可以达到多个目标。例如,人们可以尝试推广[CS 16]的结果,他们考虑了惠特克模型的表示。在[CS 16]中,G是p-adic域上的Chevalley群,H是G的Borel子群的幂单根,σ是H的非退化特征标. Iwahori Hecke代数的等价问题是确定有限Hecke代数的限制中包含Steinberg模的单模。另一个目标可以是考虑G = GL(2n,\Q_p),H = SP(2n,\Q_p)和\sigma平凡特征的例子,这是之前在[OS 07]中通过不同方法研究的一个案例。作为一个相关的玩具例子,我们必须考虑对称群的不可约表示,其对超八面体子群的限制包含平凡表示。更有趣的是,通过考虑F_q上有限Lie型群的类似限制问题,可以得到一些启示。最雄心勃勃的目标将是找到一个岩堀-赫克代数的共同框架,适用于一个巨大的类的区别问题,其中包括作为特殊情况下,上述例子。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Understanding the role of trauma in alcohol and other drug-related problems
了解创伤在酒精和其他毒品相关问题中的作用
- 批准号:
DP240101473 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Organic Bionics: Soft Materials to Solve Hard Problems in Neuroengineering
有机仿生学:解决神经工程难题的软材料
- 批准号:
FT230100154 - 财政年份:2024
- 资助金额:
-- - 项目类别:
ARC Future Fellowships
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
- 批准号:
2332922 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CRII: AF: Streaming Approximability of Maximum Directed Cut and other Constraint Satisfaction Problems
CRII:AF:最大定向切割和其他约束满足问题的流近似性
- 批准号:
2348475 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Duration models related problems in econometrics
计量经济学中的持续时间模型相关问题
- 批准号:
23K25504 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
- 批准号:
2350129 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
SHF: Small: Taming Huge Page Problems for Memory Bulk Operations Using a Hardware/Software Co-Design Approach
SHF:小:使用硬件/软件协同设计方法解决内存批量操作的大页面问题
- 批准号:
2400014 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
REU Site: Applied Mathematics in Real World Problems
REU 网站:现实世界问题中的应用数学
- 批准号:
2349382 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant