Biopolymer-Mimetic Worm-like Micelle Tissue Scaffolds

生物聚合物模拟蠕虫状胶束组织支架

基本信息

  • 批准号:
    6787659
  • 负责人:
  • 金额:
    $ 20.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-09-30 至 2006-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): We propose to develop a novel fibrillar scaffold for artificial tissue growth that combines the key attributes of synthetic biomaterials and fibrillar biopolymers, Synthetic biomaterials allow for defined composition tailored for selective cell adhesion with no risk of viral or pathogen transmission. Fibrillar biopolymer gels, such as type I collagen and fibrin, allow cellularity to be obtained directly by cell entrapment during self-assembly and are conducive to structural and compositional remodeling. For the preparation of worm-like micelle (WLM) scaffolds we will use block copolymers that contain at least three distinct regions: a crosslinkable hydrophobic core, a hydrophilic corona, and a cell adhesion peptide. The hydrophobic core will be degradable under physiological conditions (e.g., polyaliphatic esters). Polyethylene oxide (PEO) will be used as the hydrophilic component and simple cell adhesion peptides will be conjugated to the PEO terminus. After formation of a cell suspension with the WLM in aqueous solution, the hydrophobic cores of the WLMs will be chemically fixed through simple catalytic cross linking, allowing direct cell entrapment into an entangled network of stable but ultimately degrading WLMs, analogous to the fibrillar bi0polymers. Rheometry, cryo-TEM, and SAXS will be used to verify the integrity of the WLM network and to characterize physical properties relevant to cell-network mechanical interactions that lead to network contraction and alignment when a mechanical constraint is applied. The molecular parameters of the amphiphilic block copolymers will be systematically tuned to control the WLM formation, crosslinking density, degradation rates and ultimate mechanical behavior. Efforts to approximate the relevant material properties of the biopolymer gels will be emphasized. With cells entrapped into a cross-linked WLM network, cell induced network compaction and alignment will be analyzed using quantitative polarized light microscopy, and the evolving WLM degradation and ECM deposition characterized using biochemical and histological analyses. Molecular weights and cross-link density will be adjusted accordingly, and various degradable cores will be pursued as necessary, if degradation and deposition occur on disparate time scales. Cell viability and polymer degradation will be monitored. Ultimate mechanical properties, ECM composition, and ECM structure of the artificial tissues following in vitro incubation will be compared to soft connective tissues. The resultant artificial tissues will be assayed in a rat subcutaneous implantation model to assess biocompatibility.
描述(由申请人提供): 我们建议开发一种用于人工组织生长的新型纤维状支架,其结合了合成生物材料和纤维状生物聚合物的关键属性。合成生物材料允许为选择性细胞粘附量身定制的定义组合物,而没有病毒或病原体传播的风险。纤维状生物聚合物凝胶,如I型胶原蛋白和纤维蛋白,允许在自组装过程中通过细胞截留直接获得细胞结构,并有助于结构和组成重塑。对于蠕虫状胶束(WLM)支架的制备,我们将使用嵌段共聚物,包含至少三个不同的区域:一个可交联的疏水核心,亲水冠,和细胞粘附肽。疏水核在生理条件下是可降解的(例如,聚脂肪族酯)。聚环氧乙烷(PEO)将用作亲水组分,简单的细胞粘附肽将与PEO末端偶联。WLM在水溶液中形成细胞悬浮液后,WLM的疏水核将通过简单的催化交联被化学固定,从而允许直接将细胞截留到稳定但最终降解的WLM的缠结网络中,类似于纤维状生物聚合物。将使用流变仪、低温TEM和SAXS来验证WLM网络的完整性,并表征与细胞-网络机械相互作用相关的物理性质,当施加机械约束时,这些物理性质导致网络收缩和对齐。两亲性嵌段共聚物的分子参数将被系统地调整以控制WLM的形成、交联密度、降解速率和最终的机械行为。将强调努力近似生物聚合物凝胶的相关材料性质。将细胞捕获到交联的WLM网络中,使用定量偏振光显微镜分析细胞诱导的网络压实和对齐,并使用生物化学和组织学分析表征不断变化的WLM降解和ECM沉积。分子量和交联密度将相应地调整,并且如果降解和沉积在不同的时间尺度上发生,则将根据需要追求各种可降解的芯。将监测细胞活力和聚合物降解。将体外孵育后人工组织的最终机械性能、ECM组成和ECM结构与软结缔组织进行比较。将在大鼠皮下植入模型中测定所得人工组织,以评估生物相容性。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Disordered network state in hydrated block-copolymer surfactants.
  • DOI:
    10.1103/physrevlett.96.138304
  • 发表时间:
    2006-04
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Sumeet Jain;X. Gong;L. Scriven;F. Bates
  • 通讯作者:
    Sumeet Jain;X. Gong;L. Scriven;F. Bates
Synthesis and self-assembly of RGD-functionalized PEO-PB amphiphiles.
  • DOI:
    10.1021/bm900149b
  • 发表时间:
    2009-06-08
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Zupancich, John A.;Bates, Frank S.;Hillmyer, Marc A.
  • 通讯作者:
    Hillmyer, Marc A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ROBERT T TRANQUILLO其他文献

ROBERT T TRANQUILLO的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ROBERT T TRANQUILLO', 18)}}的其他基金

Biologically-engineered Transcatheter Vein Valve: Design Optimization and Preclinical Testing
生物工程经导管静脉瓣膜:设计优化和临床前测试
  • 批准号:
    10594865
  • 财政年份:
    2023
  • 资助金额:
    $ 20.7万
  • 项目类别:
Biopolymer-guided human stem cell assembly for engineered myocardium
生物聚合物引导的人类干细胞组装用于工程化心肌
  • 批准号:
    8328585
  • 财政年份:
    2011
  • 资助金额:
    $ 20.7万
  • 项目类别:
Completely biological tissue-engineered pulmonic valve grown in vitro from human
从人体体外培养的完全生物组织工程肺动脉瓣
  • 批准号:
    8083856
  • 财政年份:
    2011
  • 资助金额:
    $ 20.7万
  • 项目类别:
Completely biological tissue-engineered pulmonic valve grown in vitro from human cells for pediatric patients
完全生物组织工程肺动脉瓣,由人体细胞在体外培养,供儿科患者使用
  • 批准号:
    10188591
  • 财政年份:
    2011
  • 资助金额:
    $ 20.7万
  • 项目类别:
Tissue-engineered pulmonic valve grown from human cells for pediatric patients
由人体细胞培育而成的组织工程肺动脉瓣,供儿科患者使用
  • 批准号:
    8527302
  • 财政年份:
    2011
  • 资助金额:
    $ 20.7万
  • 项目类别:
Perfusable and beating engineered myocardium from human progenitor cells based on
基于人类祖细胞的可灌注和跳动工程心肌
  • 批准号:
    8138261
  • 财政年份:
    2011
  • 资助金额:
    $ 20.7万
  • 项目类别:
Completely biological tissue-engineered pulmonic valve grown in vitro from human cells for pediatric patients
完全生物组织工程肺动脉瓣,由人体细胞在体外培养,供儿科患者使用
  • 批准号:
    9520733
  • 财政年份:
    2011
  • 资助金额:
    $ 20.7万
  • 项目类别:
Tissue-engineered pulmonic valve grown from human cells for pediatric patients
由人体细胞培育而成的组织工程肺动脉瓣,供儿科患者使用
  • 批准号:
    8242099
  • 财政年份:
    2011
  • 资助金额:
    $ 20.7万
  • 项目类别:
Biopolymer-guided human stem cell assembly for engineered myocardium
生物聚合物引导的人类干细胞组装用于工程化心肌
  • 批准号:
    8529260
  • 财政年份:
    2011
  • 资助金额:
    $ 20.7万
  • 项目类别:
Tissue-engineered pulmonic valve grown from human cells for pediatric patients
由人体细胞培育而成的组织工程肺动脉瓣,供儿科患者使用
  • 批准号:
    8649073
  • 财政年份:
    2011
  • 资助金额:
    $ 20.7万
  • 项目类别:

相似国自然基金

mimetic引力在宇宙学中的相关研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Orientated biointerfacing of cell-mimetic nanoparticles
细胞模拟纳米粒子的定向生物界面
  • 批准号:
    DP240100770
  • 财政年份:
    2024
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Discovery Projects
Dehydration reaction in water using geo-mimetic confined nanochannels
使用几何模拟受限纳米通道在水中进行脱水反应
  • 批准号:
    24K17586
  • 财政年份:
    2024
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Postdoctoral Fellowship: MPS-Ascend: Coarse-Grained Modeling of Aggrecan- Mimetic Copolymers: Polymer Design and Architecture Effects on Structure and Phase Behavior
博士后奖学金:MPS-Ascend:聚集蛋白聚糖模拟共聚物的粗粒度建模:聚合物设计和结构对结构和相行为的影响
  • 批准号:
    2316666
  • 财政年份:
    2023
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Fellowship Award
Intermittent Fasting using a Fasting-Mimetic Diet to Improve Prostate Cancer Control and Metabolic Outcomes
使用模拟禁食饮食进行间歇性禁食以改善前列腺癌控制和代谢结果
  • 批准号:
    10639416
  • 财政年份:
    2023
  • 资助金额:
    $ 20.7万
  • 项目类别:
Probing functional HIV-1 envelope glycoprotein conformations with novel potent CD4-mimetic compounds
用新型有效的 CD4 模拟化合物探测功能性 HIV-1 包膜糖蛋白构象
  • 批准号:
    10762703
  • 财政年份:
    2023
  • 资助金额:
    $ 20.7万
  • 项目类别:
Design, Control and Flight Demonstration of Bio-Mimetic Surface Pressure Sensor Array-Equipped Morphing Aircraft
仿生表面压力传感器阵列变形飞机设计、控制与飞行演示
  • 批准号:
    23K17333
  • 财政年份:
    2023
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
HSbody, a heat sterilizable antibody-mimetic
HSbody,一种可热灭菌的抗体模拟物
  • 批准号:
    23KJ1820
  • 财政年份:
    2023
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Molecular control of blood vessel types at the regenerative interface for engineering of osteogenic and angiogenic periosteum mimetic
再生界面血管类型的分子控制,用于成骨和血管生成骨膜模拟物的工程
  • 批准号:
    10750087
  • 财政年份:
    2023
  • 资助金额:
    $ 20.7万
  • 项目类别:
Analysis of mimetic traits of butterflies using deep learning.
使用深度学习分析蝴蝶的模仿特征。
  • 批准号:
    22KJ0606
  • 财政年份:
    2023
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
VEGF-Mimetic Supramolecular Nanoparticles for Treating Spinocerebellar Ataxia Type 1
VEGF 模拟超分子纳米颗粒用于治疗 1 型脊髓小脑共济失调
  • 批准号:
    10578485
  • 财政年份:
    2023
  • 资助金额:
    $ 20.7万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了