Augmenting Molecular Property Prediction with AI and Chemical Calculation
利用人工智能和化学计算增强分子特性预测
基本信息
- 批准号:2318858
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Aims. We propose to apply cutting-edge AI algorithms to chemical simulation data, in order to extract key molecular level features that can be used to generate powerful statistical models for molecular property prediction using machine learning. The work has direct applications to improving molecular property prediction, which is of critical interest to the chemical industry. Companies such as Unilever, P&G, Akzonobel, GSK and Astrazeneca all have active research programs that require molecular property prediction via in silico methods. Background. Intricate organic solutes such as surfactants, macrocycles and biological compounds are becoming increasingly common place as industrial agents. These new modalities are increasingly required in a variety of industrial applications, for example: bio-surfactants for environmental remediation, novel polymeric materials for carbon capture and beyond-rule-of-5 drugs to modulate challenging biological targets in the pharmaceutical industry. Unfortunately, many of these new poly-functionalized organics exists in a chemical space where traditional guidelines on physical property optimization are inapplicable and predicting properties to aid design is currently extremely challenging [Nature Chem. Biol. 2016, 12, 1065-1074]. Computational modelling of poly-functionalized organic compounds is difficult because of their complex physical chemistry. Traditional "single-molecule" descriptors fail because they operate with simplified representations of molecular structure that ignore conformational degrees of freedom and the environment. Physics-based calculation methods provide a more realistic representation of the chemical environment and dynamics, but there are many properties that cannot be predicted with satisfactory accuracy using these methods alone.New Perspectives. Molecular dynamics (MD) simulations are a method to directly study the dynamics of a chemical system, leading to rich chemical insights. The featurization of a molecular dynamics trajectory will provide additional information for AI algorithms to build new powerful predictive models. An alternative approach is cDFT, a method that operates with functions describing local variations in the molecular density of a chemical system [Chem. Rev., 2015, 115, 6312-6356]. These density functions provide a wealth of information that is invaluable for interpreting chemical systems; this is evidenced by their use in predicting water sites on protein surfaces, fragment-based drug discovery, and molecular engineering. As with MD trajectories these density functions can be featurized and provided to AI methods to improve property predictions. Preliminary Evidence. One of us has recently shown accurate predictions of bioconcentration factors using a Convolution Neural Network (CNN) trained on 3D solute solvent correlation functions (computed by 3D RISM a cDFT method) [J. Phys.: Condens. Matter, 2018, 30, 32LT03]. This paper was selected as a research highlight by Physics World and Phys.org. Additionally, work from the DSP group has shown that permeability models performed better than the state-of-the-art tools for "small molecules" when they were built using descriptors computed with the 1D Reference Interaction Site Model [Mol. Pharmaceutics, 2015, 12, 3420-3432]. We have also demonstrated that the addition of features from chemical calculation can enhance the predictive accuracy of machine learning models for predicting the thermodynamics of sublimation and binding affinity. [J. Chem. Inf. Model., 2016, 56, 2162-2179; J. Chem. Inf. Model., 2018, 58, 1253-1265]
目标。我们建议将尖端的人工智能算法应用于化学模拟数据,以提取关键的分子水平特征,这些特征可用于生成强大的统计模型,用于使用机器学习进行分子特性预测。这项工作有直接的应用,以提高分子性质的预测,这是至关重要的兴趣,化学工业。联合利华、宝洁、阿克苏诺贝尔、葛兰素史克和阿斯利康等公司都有积极的研究计划,需要通过计算机方法预测分子性质。背景复杂有机溶质如表面活性剂、大环化合物和生物化合物作为工业试剂变得越来越常见。这些新的模式在各种工业应用中的需求越来越大,例如:用于环境修复的生物表面活性剂,用于碳捕获的新型聚合物材料以及用于调节制药行业中具有挑战性的生物靶标的5倍以上药物。不幸的是,这些新的多官能化有机物中的许多存在于化学空间中,在该化学空间中,关于物理性质优化的传统指导方针是不适用的,并且预测性质以辅助设计目前是极其具有挑战性的[Nature Chem.Biol.2016,12,1065-1074]。多官能化有机化合物的计算建模是困难的,因为它们复杂的物理化学。传统的“单分子”描述符失败,因为它们使用忽略构象自由度和环境的分子结构的简化表示。基于物理的计算方法提供了更真实的化学环境和动力学表示,但有许多属性无法单独使用这些方法以令人满意的精度进行预测。分子动力学(MD)模拟是一种直接研究化学系统动力学的方法,可以带来丰富的化学见解。分子动力学轨迹的特征化将为AI算法提供额外的信息,以构建新的强大的预测模型。另一种方法是cDFT,一种用描述化学系统分子密度局部变化的函数操作的方法[Chem. Rev.,2015,115,6312-6356]。这些密度函数提供了丰富的信息,这是非常宝贵的解释化学系统,这是证明了它们在预测蛋白质表面的水网站,基于片段的药物发现,和分子工程的使用。与MD轨迹一样,这些密度函数可以被特征化并提供给AI方法以改进属性预测。初步证据。我们中的一位最近使用在3D溶质溶剂相关函数(通过3D RISM cDFT方法计算)上训练的卷积神经网络(CNN)对生物浓缩因子进行了准确预测[J. Phys.:康登斯Matter,2018,30,32LT03].这篇论文被Physics World和Phys. org选为研究亮点。此外,DSP小组的工作表明,当使用用1D参考相互作用位点模型[Mol. Pharmaceutics,2015,12,3420-3432]。我们还证明,添加来自化学计算的特征可以提高机器学习模型预测升华热力学和结合亲和力的预测准确性。[J.化学信息模型,2016,56,2162-2179; J. Chem. Inf. Model.,2018年,58,1253-1265]
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
- DOI:
10.1002/cam4.5377 - 发表时间:
2023-03 - 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
- DOI:
10.1186/s12889-023-15027-w - 发表时间:
2023-03-23 - 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
- DOI:
10.1007/s10067-023-06584-x - 发表时间:
2023-07 - 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
- DOI:
10.1186/s12859-023-05245-9 - 发表时间:
2023-03-26 - 期刊:
- 影响因子:3
- 作者:
- 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
- DOI:
10.1039/d2nh00424k - 发表时间:
2023-03-27 - 期刊:
- 影响因子:9.7
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Kidney injury molecular(KIM-1)介导肾小管上皮细胞自噬在糖尿病肾病肾间质纤维化中的作用
- 批准号:81300605
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
Molecular Plant
- 批准号:31224801
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
Molecular Plant
- 批准号:31024802
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Cellular & Molecular Immunology
- 批准号:30824806
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
Creation and physical property investigations of molecular ultrathin film crystals with Kagome-honeycomb lattices
Kagome-蜂窝晶格分子超薄膜晶体的制备和物理性质研究
- 批准号:
23K17934 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Investigation of Structure-Property Relationships in Canted Antiferromagnetic Molecular Conductors by Fine Control of Intermolecular Interactions
通过分子间相互作用的精细控制研究倾斜反铁磁分子导体的结构-性能关系
- 批准号:
23K13722 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Molecular insights into food physical property revealed by quantum beam structural analysis in conjunction with rheology measurements
量子束结构分析结合流变学测量揭示了对食品物理特性的分子洞察
- 批准号:
22K05511 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Inter molecular potential prediction by ab initio molecular orbital method for refrigerant property calculation
从头算分子轨道法预测分子间势用于制冷剂特性计算
- 批准号:
22K03946 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAS: Advancing the Chemistry and Applications of Azadipyrromethene-based Complexes through Molecular Design and Structure-property Studies
CAS:通过分子设计和结构性能研究推进氮杂二吡咯亚甲基配合物的化学和应用
- 批准号:
2203595 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Quantitative structure-property relations for molecular crystals
分子晶体的定量结构-性质关系
- 批准号:
DE200101578 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
Synthesis and molecular recognition property of emissive macrocyclic host molecules based on their flexibility
基于柔性的发光大环主体分子的合成及分子识别性能
- 批准号:
21K20533 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Investigation of Molecular Representations, Chemical Databases and Machine Learning Models for Molecular Property Prediction
用于分子特性预测的分子表示、化学数据库和机器学习模型的研究
- 批准号:
2638412 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship
Efficient synthesis of thermal-stimulus responsive solid-state light-emitting molecules with various molecular geometries and evaluation of their structure-property relationship
具有不同分子几何形状的热刺激响应固态发光分子的高效合成及其构效关系评估
- 批准号:
21K05212 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of organic nanohybrids with strong circularly polarized luminescence property based on molecular assembling technique and evaluation of their applicability
基于分子组装技术的强圆偏振发光有机纳米杂化物的开发及其适用性评价
- 批准号:
20K05283 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)