Modelling cellular stress during recombinant protein production for improving upstream biomanufacturing processes

模拟重组蛋白生产过程中的细胞应激,以改善上游生物制造工艺

基本信息

  • 批准号:
    2321655
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

Recombinant proteins are expressed non-endogenously by an organism, and they have wide applications in biotechnology ranging from the biomanufacture of industrially and agriculturally relevant enzymes to therapeutics and the manufacture of biologics. Due to this commercial interest, there is pressure to achieve high yields of high quality protein product by the host cells. However, all biological systems are optimised for their own survival, and not for the production of a heterologous entity, and therefore, the process of heterologous protein expression, particularly in a state of overproduction, creates a huge burden on the cell. The host has difficulty to achieve a high quality product, i.e. a correctly processed protein, under the stress imposed by high production demand. This stress triggers responses within the host to cope with the accumulation of the low quality, and therefore undesirable, product. These responses range from the formation of inclusion bodies by prokaryotic hosts such as bacteria, to the induction of unfolded protein response by eukaryotic hosts such as yeast and mammalian cells. This research will facilitate the development of quantitative models of this stress response and the utilisation of these models in the improvement and optimisation of upstream biomanufacturing processes of recombinant protein production. Within this domain, the research is expected to equip the industry with new research methods and tools, which will help them reduce time in cell and process development and assist the alleviation of costs and risks of product development. The benefits are directly associated with biopharmaceutical and biocatalysis activities, substantial contributors of sustainability, thus the outcomes of the project will benefit the society as a whole. The knowledge and the tools resulting from the project being offered to the service of relevant industries will also strengthen their position in the global markets allowing them to remain competitive in their respective fields of operation.The aim of this research is to develop a formal understanding mammalian and microbial stress mechanisms that have an adverse impact on recombinant protein production capacity via a modelling framework. Its incorporation with data-driven models of upstream biomanufacturing will expand the predictive capability of model-driven analysis. In order to achieve this goal, the following objectives will be met:- Population of a knowledge-base of existing numerical and descriptive data pertaining the stress mechanisms described above- Development of a structured understanding of the existing know-how and identification of missing information creating bottlenecks in formulating a working model- Hypothesis generation on the structure (i.e. the topology) of this mechanism to translate into a formal description- Construction of a structured model of cellular stress in response to heterologous protein production- Model implementation (mathematical + computational framework)- Testing and improving the predictive/descriptive capacity of the model (via simulations or programming) - Incorporation of the model into existing pipelines to improve current practiceNovel approaches in handling and modelling the data will be explored as needed based on the type and the nature of the data accumulating in the knowledge-base. It is expected that stochastic models and elaborate parameter estimation techniques will have to be employed.This research project aligns with EPSRC's research themes of healthcare technologies and manufacturing the future, and with the following research areas: Biological informatics, manufacturing technologies, mathematical biology, and operational research. It also aligns with EPSRC's current research priorities in Digital Manufacturing and Sustainable Industries.No companies or collaborators are currently involved in the project, in the event of any future collaborations, this information will be updated
重组蛋白质由生物体非内源性地表达,并且它们在从工业和农业相关酶的生物制造到治疗和生物制剂的制造的生物技术中具有广泛的应用。由于这种商业利益,存在通过宿主细胞实现高产量的高质量蛋白质产物的压力。然而,所有的生物系统都是为了它们自身的存活而优化的,而不是为了异源实体的产生,因此,异源蛋白质表达的过程,特别是在过度产生的状态下,对细胞造成了巨大的负担。宿主在高生产需求施加的压力下难以获得高质量的产品,即正确加工的蛋白质。这种压力触发宿主内的反应,以科普低质量的积累,因此不受欢迎的产品。这些反应的范围从原核宿主如细菌形成包涵体,到真核宿主如酵母和哺乳动物细胞诱导未折叠蛋白质反应。这项研究将有助于开发这种应激反应的定量模型,并利用这些模型来改进和优化重组蛋白生产的上游生物制造过程。在这一领域内,该研究有望为该行业提供新的研究方法和工具,这将有助于他们减少电池和工艺开发的时间,并有助于减轻产品开发的成本和风险。这些好处与生物制药和生物催化活动直接相关,是可持续发展的重要贡献者,因此该项目的成果将使整个社会受益。该项目为相关行业提供的知识和工具也将加强其在全球市场上的地位,使其能够在各自的业务领域保持竞争力。本研究的目的是通过建模框架,正式了解对重组蛋白生产能力产生不利影响的哺乳动物和微生物应激机制。它与上游生物制造的数据驱动模型的结合将扩大模型驱动分析的预测能力。为实现这一目标,将实现以下目标:- 建立与上述压力机制有关的现有数字和描述性数据的知识库-对现有技术有条理地了解,并确定在制定工作模型时造成瓶颈的缺失信息-生成关于结构的假设- 响应于异源蛋白质产生的细胞应激的结构化模型的构建-模型实施(数学+计算框架)-测试和提高模型的预测/描述能力(通过模拟或编程)-将该模型纳入现有管道,以改进现行做法。将根据需要探索处理和模拟数据的新方法基于知识库中积累的数据的类型和性质。本研究项目与EPSRC的医疗技术和未来制造业的研究主题相一致,并与以下研究领域相一致:生物信息学,制造技术,数学生物学和运筹学。它也符合EPSRC目前在数字制造和可持续工业方面的研究重点。目前没有公司或合作者参与该项目,如果未来有任何合作,此信息将更新

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

基于MFSD2A调控血迷路屏障跨细胞囊泡转运机制的噪声性听力损失防治研究
  • 批准号:
    82371144
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
rhTβ4增强间充质干细胞调节T细胞代谢重塑治疗干眼的机制研究
  • 批准号:
    32000530
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
胰岛素和细菌信号协同调节巨噬细胞免疫反应的作用
  • 批准号:
    92057105
  • 批准年份:
    2020
  • 资助金额:
    89.0 万元
  • 项目类别:
    重大研究计划
聚谷氨酰胺(PolyQ)疾病致病蛋白构象多态性的研究及应用
  • 批准号:
    31970748
  • 批准年份:
    2019
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
MAPK11通过RNA结合蛋白ELAVL1调控HTT水平的机制与病理意义研究
  • 批准号:
    31970747
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
细胞代谢重组过程中蛋白质组热稳定性分析
  • 批准号:
    31970706
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
Atg4B可逆氧化修饰的作用机制及其对自噬的调节研究
  • 批准号:
    31970699
  • 批准年份:
    2019
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
用识别EBV相关淋巴瘤抗原多肽的T细胞受体做转基因免疫治疗
  • 批准号:
    81041002
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
半群代数和半群表示
  • 批准号:
    10961014
  • 批准年份:
    2009
  • 资助金额:
    18.0 万元
  • 项目类别:
    地区科学基金项目
Cellular & Molecular Immunology
  • 批准号:
    30824806
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

MCA: Cellular Responses to Thermal Stress in Antarctic Fishes: Dynamic Re-structuring of the Proteome in Extreme Stenotherms
MCA:南极鱼类对热应激的细胞反应:极端钝温鱼蛋白质组的动态重组
  • 批准号:
    2322117
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
REU Site: Cellular and Molecular Biology of Stress (CMBS): Exploring the Complexities of Adaptation and Resilience
REU 网站:压力细胞和分子生物学 (CMBS):探索适应和恢复力的复杂性
  • 批准号:
    2349028
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
  • 批准号:
    10752276
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
Gain-of-function toxicity in alpha-1 antitrypsin deficient type 2 alveolar epithelial cells
α-1 抗胰蛋白酶缺陷型 2 型肺泡上皮细胞的功能获得毒性
  • 批准号:
    10751760
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
Contribution of Endothelial Planar Cell Polarity pathways in Blood Flow Direction Sensing
内皮平面细胞极性通路在血流方向传感中的贡献
  • 批准号:
    10750690
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
Regulation of gene expression by the La and La-related proteins
La 和 La 相关蛋白对基因表达的调节
  • 批准号:
    489704
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Molecular basis of mitochondrial dynamics and their contribution to cellular stress responses
线粒体动力学的分子基础及其对细胞应激反应的贡献
  • 批准号:
    23H02096
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
EGF Receptor Endocytosis: Mechanisms and Role in Signaling
EGF 受体内吞作用:机制及其在信号传导中的作用
  • 批准号:
    10552100
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Identifying and Addressing the Effects of Social Media Use on Young Adults' E-Cigarette Use: A Solutions-Oriented Approach
识别和解决社交媒体使用对年轻人电子烟使用的影响:面向解决方案的方法
  • 批准号:
    10525098
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
UNDERSTANDING THE RULES OF LIFE - Regulation of cellular stress responses by long noncoding RNAs
了解生命规则 - 长非编码 RNA 调节细胞应激反应
  • 批准号:
    2890784
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了