Deep-Learning Algorithms for Evolutionary Inferences from Genomic and Ecological Data
从基因组和生态数据进行进化推断的深度学习算法
基本信息
- 批准号:2366357
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
One of the most elusive questions in evolutionary biology is to what extent adaptation has shaped genomes of extant species and populations. The exposure to novel environmental conditions imposed selective pressures, which led to genetic adaptations and differentiation between populations (Quach, Quintana-Murci 2017). The identification of signatures of natural selection in the genome has therefore the two-fold importance of (i) assessing the ability for endangered species to respond to climate change and (ii) localising functional variants. Due to the limited power of current methods to detect selection signatures, we are still far from a comprehensive view of how neutral and selective events have characterised species' evolution and their genomes. Artificial intelligence, or machine learning (ML), algorithms maximise the predictive accuracy by automatically and iteratively tuning their internal parameters while remaining relatively unconscious to the phenomenon they are trying to predict. A recently introduced class of supervised ML algorithms is deel learning, an inference framework based on artificial neural networks. Deep learning is a subject of intensive research and has provided impressive results in pattern (e.g. speech) recognition, computer vision, robotics and bioinformatics (e.g. identification of splice-sites). Despite their predictive powerfulness, application of deep learning algorithms in evolutionary genomics is still in its infancy (Sheehan and Song, 2016). In population genetics, variation of genomes within and between populations is used to infer historical events, including size changes, characteristic of the species of interest. Thanks to the technological advances of RNA/DNA sequencing, we are now able to collect and analyse a large amount of genomic data. However, population genetics data are inherently noisy and multidimensional and models underlying them are similarly complex, limiting the unveiling of novel insights. Therefore, deep learning algorithms have the potential to solve these problems and address some of the long-standing issues in this field. This project will explore the applicability of deep learning algorithms, specifically convolutional neural networks, to infer evolutionary paramters, such as historical changes of population size or sites targeted by natural selection, from large-scale genomic data of extant and ancient (when available) samples. While similar strategies have been applied to infer binary parameters (e.g. presense or not of recombination hotspots, as in Chen et al. 2018), we will expand these methods by including the possibility of multiclassification and estimation of continuous parameters, a task currently challenging in deep learning. The introduction of deep learning algorithms in population genetics is key for extracting meaningful information from eco-genomics data. The project has the potential to reap the benefits of artificial intelligence to understand how species evolved and adapted to their environments, with obvious implications for conservation strategies. Given our unique application in evolutionary genomics, we foresee the scope for introducing either novel architectures or neural layers which can be applied to other fields.
进化生物学中最难以捉摸的问题之一是适应在多大程度上塑造了现存物种和种群的基因组。暴露于新的环境条件施加了选择压力,导致种群之间的遗传适应和分化(Quach,Quintana-Murci 2017)。因此,识别基因组中的自然选择特征具有双重重要性:(i)评估濒危物种应对气候变化的能力;(ii)定位功能变体。由于目前检测选择特征的方法能力有限,我们仍然远远没有全面了解中性和选择性事件如何表征物种的进化及其基因组。人工智能或机器学习(ML)算法通过自动和迭代地调整其内部参数,同时对他们试图预测的现象保持相对无意识,从而最大限度地提高预测准确性。最近引入的一类监督ML算法是deel学习,这是一种基于人工神经网络的推理框架。深度学习是一个深入研究的主题,并在模式(例如语音)识别,计算机视觉,机器人和生物信息学(例如剪接位点的识别)方面提供了令人印象深刻的结果。尽管它们的预测能力很强,但深度学习算法在进化基因组学中的应用仍处于起步阶段(Sheehan和Song,2016)。在种群遗传学中,种群内和种群之间的基因组变异被用来推断历史事件,包括大小变化,这是感兴趣物种的特征。由于RNA/DNA测序技术的进步,我们现在能够收集和分析大量的基因组数据。然而,群体遗传学数据本质上是嘈杂和多维的,它们背后的模型也同样复杂,限制了新见解的揭示。因此,深度学习算法有可能解决这些问题,并解决该领域的一些长期存在的问题。该项目将探索深度学习算法的适用性,特别是卷积神经网络,以推断进化参数,例如人口规模的历史变化或自然选择的目标地点,从现存和古代样本的大规模基因组数据(如可用)。虽然类似的策略已被应用于推断二进制参数(例如,存在或不存在重组热点,如Chen et al. 2018),但我们将通过包括多分类和连续参数估计的可能性来扩展这些方法,这是目前深度学习中具有挑战性的任务。在群体遗传学中引入深度学习算法是从生态基因组学数据中提取有意义信息的关键。该项目有可能获得人工智能的好处,以了解物种如何进化和适应其环境,对保护策略有明显的影响。鉴于我们在进化基因组学中的独特应用,我们预见了引入可应用于其他领域的新架构或神经层的范围。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
RII Track-4:@NASA: Enhancing Flood Detection and Mapping by Using PolSAR, Metaheuristic, and Deep Learning Algorithms
RII Track-4:@NASA:使用 PolSAR、元启发式和深度学习算法增强洪水检测和绘图
- 批准号:
2327253 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Deep Learning Image Analysis Algorithms to Improve Oral Cancer Risk Assessment for Oral Potentially Malignant Disorders
深度学习图像分析算法可改善口腔潜在恶性疾病的口腔癌风险评估
- 批准号:
10805177 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative Research: FET: Small: De Novo Protein Scaffold Filling by Combinatorial Algorithms and Deep Learning Models
合作研究:FET:小型:通过组合算法和深度学习模型从头填充蛋白质支架
- 批准号:
2307573 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
2311500 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: AMPS: Deep-Learning-Enabled Distributed Optimization Algorithms for Stochastic Security Constrained Unit Commitment
合作研究:AMPS:用于随机安全约束单元承诺的深度学习分布式优化算法
- 批准号:
2229345 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: FET: Small: De Novo Protein Scaffold Filling by Combinatorial Algorithms and Deep Learning Models
合作研究:FET:小型:通过组合算法和深度学习模型从头填充蛋白质支架
- 批准号:
2307571 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Asymptotic analysis of online training algorithms in deep learning
深度学习在线训练算法的渐近分析
- 批准号:
2879209 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Noninvasive prediction of skin precancer severity using in vivo cellular imaging and deep learning algorithms.
使用体内细胞成像和深度学习算法无创预测皮肤癌前病变的严重程度。
- 批准号:
10761578 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative Research: FET: Small: De Novo Protein Scaffold Filling by Combinatorial Algorithms and Deep Learning Models
合作研究:FET:小型:通过组合算法和深度学习模型从头填充蛋白质支架
- 批准号:
2307572 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




