Hecke algebras and representation theory

赫克代数和表示论

基本信息

  • 批准号:
    2427521
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

Hecke algebras, which are a deformation of the group algebras of Coxeter groups, play an important role in representation theory. These algebras perhaps first rose to prominence through the study of induced representations following Harish-Chandra's philosophy of cusp forms, but now touch on many aspects of the field and its interactions with other parts of mathematics.An important class of Hecke algebras naturally arising in the study of p-adic groups are the affine Hecke algebras attached to affine Coxeter groups. While Hecke algebras associated to arbitrary Coxeter groups have a standard presentation resembling the Coxeter structure of the underlying group, a special feature of affine Hecke algebras is that they also have a quite different, though less evident, presentation first discovered by Bernstein. This second presentation is closely related to the fact that affine Coxeter groups can be realised as an extension of a finite Coxeter group by a lattice and affine Hecke algebras contain both the (finite) Hecke algebra associated to the corresponding finite Coxeter group and the group algebra of the corresponding lattice.The two presentations described above turn out to be shadows of richer geometric structures: The celebrated work of Kazhdan and Lusztig, which classified the irreducible representations of affine Hecke algebras, showed that the Bernstein presentation is a reflection of the fact that the affine Hecke algebra can be realized as the equivariant K-theory of a variety first studied by Steinberg. The Coxeter presentation, on the other hand, reflects the fact that the affine Hecke algebra can be realized as a suitable K-group of a category of constructible sheaves on the affine flag variety. More recent work of Bezrukavnikov has shown that one can categorify the fact that these two presentations realize the same algebra: there is a natural equivalence of categories between the constructible category on the affine flag variety and the category of equivariant coherent sheaves on the Steinberg variety. Aside from its intrinsic beauty, this deep equivalence has been used to prove highly non-trivial results (for example Achar-Rider's proof of the Mirkovic-Vilonen conjecture on the absence of torsion in the stalks of standard sheaves on the affine flag variety). It has moreover become increasingly clear that it is important now to study not just (affine) Hecke algebras, but also their categorical analogues, the so-called Hecke categories. In doing so, it seems natural to investigate to what extent one can produce "presentations" of such categories. This is also closely related to studying categorical actions of the braid groups of which Hecke algebras are a quotient.A possible application of any results in this direction would be to representations of quantum groups at a root of unity. When taking the "crystalline" integral form of a quantum group, the specialization to a root of unity yields an algebra with large centre, and work of Backelin-Kremnizter and Tanisaki has shown that the representation theory of such algebras is intimately related to the geometry of the Springer resolution (in characteristic 0). This relationship produces interesting t-structures on the categories of coherent sheaves on Springer fibres, which should be related to similar t-structures produced in positive characteristic by Bezrukavnikov and Mirkovic (in work that developed from their seminal paper with Rumynin). In the positive characteristic setting these t-structures are known to be controlled by a braid group action, and one expects similar results in the quantum case. Establishing such a result should allow one to construct a new direct bridge between the representation theory of quantum groups at roots of unity and the modular theory.This project falls within the EPSRC Algebra research area with connections to the EPSRC Geometry & Topology research area.
Hecke代数是Coxeter群的群代数的一种变形,在表示理论中占有重要地位。这些代数也许是通过对哈希-钱德拉尖头形式哲学之后的诱导表征的研究而首次崭露头角,但现在涉及该领域的许多方面及其与数学其他部分的相互作用。在p进群的研究中自然产生的一类重要的Hecke代数是附在仿射Coxeter群上的仿射Hecke代数。虽然与任意Coxeter群相关的Hecke代数具有类似于底层群的Coxeter结构的标准表示,但仿射Hecke代数的一个特殊特征是,它们也有一个完全不同的,尽管不太明显的表示,这是Bernstein首先发现的。这第二种表述与以下事实密切相关:仿射Coxeter群可以通过晶格实现为有限Coxeter群的扩展,而仿射Hecke代数既包含与相应有限Coxeter群相关的(有限)Hecke代数,也包含相应晶格的群代数。上面描述的两种表述是更丰富的几何结构的影子:Kazhdan和Lusztig的著名工作,对仿射Hecke代数的不可约表示进行了分类,表明Bernstein的表述反映了这样一个事实,即仿射Hecke代数可以被实现为斯坦伯格首先研究的一个变种的等变k理论。另一方面,Coxeter表示则反映了仿射Hecke代数可以被实现为仿射旗变体上一类可构造束的合适k群。Bezrukavnikov最近的工作表明,人们可以对这两个表示实现相同代数的事实进行分类:仿射标志变体上的可构造范畴与斯坦伯格变体上的等变相干束范畴之间存在自然等价的范畴。除了它内在的美之外,这个深度等价已经被用来证明非常重要的结果(例如,Achar-Rider对Mirkovic-Vilonen猜想的证明,证明了仿射旗帜上标准束的茎部不存在扭转)。此外,越来越明显的是,现在不仅要研究(仿射)赫克代数,而且要研究它们的分类类似物,即所谓的赫克范畴,这一点非常重要。在这样做的过程中,似乎很自然地要调查一个人能在多大程度上产生这些类别的“呈现”。这也与研究以Hecke代数为商的辫群的范畴作用密切相关。在这个方向上的任何结果的一个可能的应用将是在统一根上的量子群的表示。当取量子群的“晶体”积分形式时,对单位根的专门化产生具有大中心的代数,Backelin-Kremnizter和Tanisaki的工作表明,这种代数的表示理论与施普林格分辨率(特征0)的几何密切相关。这种关系在施普林格纤维的相干束类别上产生了有趣的t型结构,这应该与Bezrukavnikov和Mirkovic在正特征中产生的类似t型结构有关(在他们与Rumynin的开创性论文的基础上发展而来的工作)。在正特征设置中,已知这些t型结构是由编织群作用控制的,并且人们期望在量子情况下得到类似的结果。建立这样的结果应该允许人们在统一根量子群的表示理论和模理论之间建立一个新的直接桥梁。该项目属于EPSRC代数研究领域,与EPSRC几何与拓扑研究领域有联系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

数学物理中精确可解模型的代数方法
  • 批准号:
    11771015
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目

相似海外基金

Representation theory of wild cyclotomic quiver Hecke algebras and the symmetric group
狂野分圆箭袋Hecke代数和对称群的表示论
  • 批准号:
    21K03163
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric Methods in the Representation Theory of Affine Hecke Algebras, Finite Reductive Groups, and Character Sheaves
仿射 Hecke 代数、有限还原群和特征轮表示论中的几何方法
  • 批准号:
    1855773
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Categorical Representation Theory of Hecke Algebras
职业:赫克代数的分类表示论
  • 批准号:
    1553032
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Geometric Methods in the Representation Theory of Affine Hecke Algebras, Finite Reductive Groups, and Character Sheaves
仿射 Hecke 代数、有限还原群和特征轮表示论中的几何方法
  • 批准号:
    1566618
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Representation theory of quiver Hecke algebras
箭袋赫克代数的表示论
  • 批准号:
    15F15017
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Mathematical Sciences: Geometric methods in the representation theory of affine Hecke algebras, finite reductive groups and character sheaves
数学科学:仿射 Hecke 代数、有限约简群和特征轮表示论中的几何方法
  • 批准号:
    1303060
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Modular representation theory of Hecke algebras associated with complex reflection groups and their quasi-hereditary covers
与复反射群相关的赫克代数的模表示论及其拟遗传覆盖
  • 批准号:
    24740007
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Representation theory and combinatorics of classical groups, quantum groups and Hecke algebras
经典群、量子群和赫克代数的表示论和组合学
  • 批准号:
    23540008
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Connections between cohomology and representation theory of symmetric groups, braid groups, Hecke algebras, and algebraic groups
对称群、辫群、赫克代数和代数群的上同调与表示论之间的联系
  • 批准号:
    1068783
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Representation theory of Iwahori-Hecke algebras and reflection groups
Iwahori-Hecke 代数和反射群的表示论
  • 批准号:
    23540026
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了