Bayesian network models of political polarisation

政治极化的贝叶斯网络模型

基本信息

  • 批准号:
    2427544
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

Cases of belief polarisation, where individuals' views become more divergent after consuming the same information, are often attributed to motivated reasoning. However, work outside political psychology has demonstrated that Bayesian network models of cognition can generate belief polarisation among agents whose only motivation is accuracy. These demonstrations have never been empirically tested within the domain of political psychology before. The goal of this research project, therefore, is to identify Bayesian network models which can plausibly explain real-world cases of political belief polarisation, and test whether these offer a better explanation than motivated reasoning accounts. One defining feature of Bayesian network explanations of polarisation is their assumption that individuals do not believe sources of information to be wholly truthful, whether intentionally or incidentally. A key factor here is whether people perceive sources of information to be biased. An attribution of bias might arise for numerous reasons - they might think the source is motivated to spread misinformation they know is untrue, or that they sincerely believe false information due to their gullibility, for instance. One further goal of the project, therefore, is to enhance understanding of why and when bias is attributed to information sources. Attributions of source bias could be the product of motivated reasoning - people attribute bias to people who say things they don't want to believe - or partisanship - people attribute bias to outgroup members and honesty to ingroup members. Or, they could be explained by people making reasonable inferences from their beliefs about the biasedness of the source and any relevant groups to which they belong, the biasedness implied by the content of their message, and how common misinformation and biased sources are in their political information environment. This would suggest that the information environment to which people are exposed, and their perception of it, is important for understanding polarisation, and might help explain why polarisation levels differ across countries, times, and political systems, something explanations grounded in motivated reasoning and partisanship struggle to address. Linking environmental-level factors to individual-level cognition through the lens of Bayesian network approaches, in pursuit of a fuller understanding of polarisation, is the ultimate aim of this research project. It is hoped that this will work will establish findings that can guide depolarisation initiatives in the future. The project will use a mixture of computational modelling work and experimentation. This research primarily considers literature within social psychology and cognitive psychology, but is also be informed by epistemology and sociological work.
信仰两极分化的情况下,个人的意见变得更加分歧后,消费相同的信息,往往归因于动机推理。然而,政治心理学之外的工作表明,贝叶斯网络认知模型可以在唯一动机是准确性的代理人之间产生信念极化。这些论证以前从未在政治心理学领域进行过实证检验。因此,本研究项目的目标是确定贝叶斯网络模型,这些模型可以合理地解释现实世界中的政治信仰两极分化的情况下,并测试这些是否提供了一个更好的解释比动机推理帐户。 贝叶斯网络对两极分化的解释的一个定义特征是他们假设个人不相信信息来源是完全真实的,无论是有意还是无意。这里的一个关键因素是人们是否认为信息来源是有偏见的。偏见的归因可能有很多原因-例如,他们可能认为消息来源有动机传播他们知道是不真实的错误信息,或者他们因为轻信而真诚地相信错误信息。因此,该项目的另一个目标是加强了解为什么以及何时将偏见归因于信息来源。 来源偏见的归因可能是动机性推理的产物--人们将偏见归因于那些说了他们不想相信的事情的人--或者党派偏见--人们将偏见归因于外群成员,将诚实归因于内群成员。或者,他们可以解释为人们从他们对消息来源和他们所属的任何相关群体的偏见的信念中做出合理的推断,他们的消息内容所暗示的偏见,以及错误信息和有偏见的消息来源在他们的政治信息环境中有多常见。这表明,人们所接触的信息环境以及他们对它的看法对于理解极化非常重要,并且可能有助于解释为什么极化水平在国家,时代和政治制度之间存在差异,这是基于动机推理和党派斗争的解释。 通过贝叶斯网络方法的透镜将环境层面的因素与个人层面的认知联系起来,以追求对极化的更全面的理解,是本研究项目的最终目标。希望这将工作将建立可以指导未来去极化倡议的发现。 该项目将使用计算建模工作和实验的混合物。本研究主要考虑社会心理学和认知心理学中的文献,但也受到认识论和社会学工作的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

铜募集微纳米网片上调LOX活性稳定胶原网络促进盆底修复的研究
  • 批准号:
    82371638
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
GPSM1介导Ca2+循环-II型肌球蛋白网络调控脂肪产热及代谢稳态的机制研究
  • 批准号:
    82370879
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Notch1/β-catenin/Pax6通路调控角膜缘干细胞分化的机制研究
  • 批准号:
    32000537
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Jab1依赖结合蛋白和去泛素化功能在DNA损伤反应中的双重作用研究
  • 批准号:
    31900558
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
多维在线跨语言Calling Network建模及其在可信国家电子税务软件中的实证应用
  • 批准号:
    91418205
  • 批准年份:
    2014
  • 资助金额:
    170.0 万元
  • 项目类别:
    重大研究计划
以PXR、CAR为核心的调控网络、作用机制及其指导环磷酰胺个体化用药的临床转化研究
  • 批准号:
    81173131
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
转录因子DNA结合谱绘制新方法及其应用研究
  • 批准号:
    61171030
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
内容分发网络中的P2P分群分发技术研究
  • 批准号:
    61100238
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于贝叶斯网络可靠度演进模型的城市雨水管网整体优化设计理论研究
  • 批准号:
    51008191
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Use Bayesian methods to facilitate the data integration for complex clinical trials
使用贝叶斯方法促进复杂临床试验的数据集成
  • 批准号:
    10714225
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Bayesian Dynamical Modeling of Microbial Communities
微生物群落的贝叶斯动力学建模
  • 批准号:
    10350044
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Bayesian Dynamical Modeling of Microbial Communities
微生物群落的贝叶斯动力学建模
  • 批准号:
    10611301
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Multiscale, Multi-fidelity and Multiphysics Bayesian Neural Network (BNN) Machine Learning (ML) Surrogate Models for Modelling Design Based Accidents
用于基于事故建模设计的多尺度、多保真度和多物理场贝叶斯神经网络 (BNN) 机器学习 (ML) 替代模型
  • 批准号:
    2764855
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Bayesian Differential Causal Network and Clustering Methods for Single-Cell Data
单细胞数据的贝叶斯差分因果网络和聚类方法
  • 批准号:
    10707494
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Bayesian Differential Causal Network and Clustering Methods for Single-Cell Data
单细胞数据的贝叶斯差分因果网络和聚类方法
  • 批准号:
    10592720
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Fast and flexible Bayesian phylogenetics via modern machine learning
通过现代机器学习快速灵活的贝叶斯系统发育学
  • 批准号:
    10654594
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Bayesian Network-Based Integrative Genomics Methods for Precision Medicine
基于贝叶斯网络的精准医学综合基因组学方法
  • 批准号:
    10577871
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Fast and flexible Bayesian phylogenetics via modern machine learning
通过现代机器学习快速灵活的贝叶斯系统发育学
  • 批准号:
    10266670
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Fast and flexible Bayesian phylogenetics via modern machine learning
通过现代机器学习快速灵活的贝叶斯系统发育学
  • 批准号:
    10434141
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了