Bayesian Network-Based Integrative Genomics Methods for Precision Medicine
基于贝叶斯网络的精准医学综合基因组学方法
基本信息
- 批准号:10577871
- 负责人:
- 金额:$ 43.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAreaBayesian NetworkBiologicalBiological FactorsBiological ProcessCancer PatientCancer cell lineCell LineCharacteristicsClinicalClinical ResearchClustered Regularly Interspaced Short Palindromic RepeatsCodeColorectal CancerCommunitiesComplexComputer softwareConsensusDNA Sequence AlterationDataData SetDiseaseDrug TargetingEncyclopediasEpigenetic ProcessFollow-Up StudiesFormulationFree WillGenesGeneticGenomicsGraphHeterogeneityImmuneIndividualKnowledgeLettersLinkLiteratureMalignant NeoplasmsMediationMediatorMessenger RNAMethodsModelingModernizationMolecularMutationNetwork-basedOncogenicPathway interactionsPatient SelectionPatientsPharmaceutical PreparationsPhenotypePrecision therapeuticsPrediction of Response to TherapyProcessResearchResearch PersonnelResource SharingRunningStatistical MethodsStructureTechniquesTestingThe Cancer Genome AtlasTherapeuticTrainingUniversity of Texas M D Anderson Cancer CenterValidationWorkactive methodanalytical methodarmcancer subtypesclinical translationcohortcolon cancer patientsdata sharinggenomic datagenomic platformimproved outcomeindividual patientlarge datasetsmolecular subtypesnetwork modelsnew therapeutic targetnovelpersonalized medicineprecision medicinepreclinical studyrare cancerresponsestatistical learningsuccesstargeted treatmenttherapeutic targettooltumorusabilityweb portal
项目摘要
Project Summary/Abstract
Modern multi-platform genomic data sets contain substantial molecular information potentially useful for discovering
new precision therapeutic strategies. Integration across multi-platform data and across genes using network-based
models is a key to extracting mechanistic molecular information embedded in these data. In this proposal, we develop
integrative network-based methods that ll gaps in existing literature. They will be used to identify key pathways for
a given disease and its subtypes, nd key upstream regulators of these pathways and determine which appear to be
causal, construct pathway signatures potentially usable for patient selection, and identify factors modulating pathway
associations. While our methods will be applicable to any disease setting, our initial focus will be to use multi-platform
genomic data sets to provide a deep molecular characterization of four recently discovered consensus molecular subtypes
(CMS) of colorectal cancer (CRC) to arm our biomedical and clinical collaborators with knowledge to devise and test
new precision therapeutic strategies targeting these subtypes. For these purposes, we propose the following aims:
Speci c Aim 1: We will devise a novel model formulation regressing pathway scores on upstream genetic and epigenetic
factors to identify a sparse set of potential pathway drivers. We will identify characteristic pathways for each CMS and
for each pathway identify potential drivers that our biomedical collaborators will functionally validate via CRISPR and
identify potential matching drug targets. We will also develop novel Bayesian hierarchically linked regression models
(BLINK) that will determine which cancers share common pathway drivers and thus are candidates for sharing a common
targeted therapy, while increasing power for discovery of pathway drivers for rare cancers.
Speci c Aim 2: We will develop network mediation analysis approaches to discover putative causal network edges
in multi-layered graphs of multi-platform genomic data. We will use these methods to more deeply characterize the
networks underlying key CMS-characteristic pathways and determine which potential pathway drivers appear to be
causal, and which mediators are predictive of response to therapy. From these networks, we will devise methods to
construct pathway signatures integrating multi-platform molecular information to provide a single-number, patient-
speci c summary of pathway activity potentially useful for patient selection for precision therapeutics.
Speci c Aim 3: We will develop novel Bayesian network regression methods for undirected and multi-layer networks
that identify heterogeneous network structure varying linearly or nonlinearly across patient-speci c covariates. We
will apply these methods to key networks identi ed for CRC data to discover how these networks vary across various
covariates, including subtypes (CMS), biological factors (immune in ltration), and clinical response.
Successful completion of this work will produce a broad set of rigorous tools for integrative and network modeling of
multi-platform genomic data, and will provide our CRC collaborators with a short list of key CMS-speci c pathways and
drivers for functional validation and clinical translation via CMS-based precision therapeutics. Our dissemination efforts
will include software for our methods and Shiny apps for exploring biological underpinnings of CRC.
项目总结/摘要
现代多平台基因组数据集包含大量的分子信息,可能有助于发现
新的精准治疗策略使用基于网络的跨平台数据和跨基因的集成
模型是提取嵌入在这些数据中的机械分子信息的关键。在本提案中,我们开发
综合网络为基础的方法,填补了现有文献的空白。它们将被用来确定关键途径,
一个给定的疾病及其亚型,和这些途径的关键上游调控,并确定哪些似乎是
因果关系,构建可能用于患者选择的途径签名,并确定调节途径的因素
协会.虽然我们的方法将适用于任何疾病的设置,我们最初的重点将是使用多平台
基因组数据集,为最近发现的四种共有分子亚型提供深入的分子表征
(CMS)结直肠癌(CRC)的研究,以武装我们的生物医学和临床合作者,
针对这些亚型的新的精确治疗策略。为此,我们提出以下目标:
具体目标1:我们将设计一个新的模型公式回归上游遗传和表观遗传的途径得分
因素来识别一组稀疏的潜在途径驱动因素。我们将确定每个CMS的特征途径,
对于每种途径,确定我们的生物医学合作者将通过CRISPR功能验证的潜在驱动因素,
确定潜在的匹配药物靶点。我们还将开发新的贝叶斯分层关联回归模型
(BLINK),这将确定哪些癌症具有共同的途径驱动因素,因此是共享共同的
靶向治疗,同时增加发现罕见癌症途径驱动因素的能力。
具体目标2:我们将开发网络中介分析方法,以发现假定的因果网络边缘
在多平台基因组数据的多层图中。我们将使用这些方法来更深入地描述
网络的关键CMS特征的途径,并确定哪些潜在的途径驱动程序似乎是
因果关系,以及哪些介质可预测对治疗的反应。从这些网络中,我们将设计方法,
构建整合多平台分子信息的途径签名,以提供单一数字,患者-
对精确治疗的患者选择潜在有用的途径活性的具体概述。
具体目标3:我们将开发新的贝叶斯网络回归方法,用于无向和多层网络
其识别跨患者特异性协变量线性或非线性变化的异构网络结构。我们
我将这些方法应用于CRC数据艾德的关键网络,以发现这些网络如何在不同的网络中变化。
协变量,包括亚型(CMS)、生物学因素(免疫滤过)和临床应答。
这项工作的成功完成将产生一套广泛的严格的工具,用于综合和网络建模,
多平台基因组数据,并将为我们的CRC合作者提供关键CMS特异性途径的简短列表,
通过基于CMS的精确疗法进行功能验证和临床转化的驱动因素。我们的传播网络
将包括我们的方法软件和探索CRC生物学基础的Shiny应用程序。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Veerabhadran Baladandayuthapani其他文献
Veerabhadran Baladandayuthapani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Veerabhadran Baladandayuthapani', 18)}}的其他基金
Proteomic-based integrated subject-specific networks in cancer
癌症中基于蛋白质组学的综合主题特定网络
- 批准号:
9506027 - 财政年份:2018
- 资助金额:
$ 43.36万 - 项目类别:
Integrative methods for high-dimensional genomics data
高维基因组数据的整合方法
- 批准号:
8323898 - 财政年份:2011
- 资助金额:
$ 43.36万 - 项目类别:
Integrative methods for high-dimensional genomics data
高维基因组数据的整合方法
- 批准号:
8685000 - 财政年份:2011
- 资助金额:
$ 43.36万 - 项目类别:
Integrative methods for high-dimensional genomics data
高维基因组数据的整合方法
- 批准号:
8504822 - 财政年份:2011
- 资助金额:
$ 43.36万 - 项目类别:
Integrative methods for high-dimensional genomics data
高维基因组数据的整合方法
- 批准号:
8162065 - 财政年份:2011
- 资助金额:
$ 43.36万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 43.36万 - 项目类别:
Standard Grant
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 43.36万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 43.36万 - 项目类别:
Research Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 43.36万 - 项目类别:
Major Research Instrumentation
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 43.36万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 43.36万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 43.36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 43.36万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: OPP-PRF: Tracking Long-Term Changes in Lake Area across the Arctic
博士后奖学金:OPP-PRF:追踪北极地区湖泊面积的长期变化
- 批准号:
2317873 - 财政年份:2024
- 资助金额:
$ 43.36万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 43.36万 - 项目类别:
Standard Grant