Hybrid piezoelectric films and smart icephobic coatings with acoustic wave strategies for active ice protection

混合压电薄膜和智能疏冰涂层,采用声波策略进行主动冰防护

基本信息

  • 批准号:
    2430814
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

Ice buildup (via super-cold humid air, frost formation, frozen condensation or freezing rain) poses significant operational and safety challenges on wind/marine turbines and aeroplanes. For wind energy generation, these turbines often suffer significant drops in efficiency/production, severe damages or accidents. Ice accumulated on aircraft during flight seriously deteriorates aerodynamic performance and may lead to disasters. The key aim of this project is to research hybrid smart thin materials combining piezoelectric films (such as doped-ZnO) and inherently icephobic surface/coatings, to generate surface acoustic waves (SAWs), which are used as anti-icing and de-icing mechanisms to mitigate real-time ice issues for the wind turbines. The innovative idea is to research hybrid piezoelectric thin films to generate SAWs directly onto surfaces of structures which can then excite a synergistic mechano-thermal effect for both anti-icing/de-icing functions, and to simultaneously perform ice sensing using these thin film acoustic wave devices. A key advantage of this developed smart thin film material platform with icephobic coatings is its seamless integration onto surfaces of turbine blades with energy efficient and wireless actuation/control/sensing functions. Some of the work will include the experimental investigation of droplet impact with low-temperature droplets and on low-temperature surfaces in order to simulate the effect of cold climates on both wind turbines and aircraft.The project has the following key research work: (1) Design/deposit/characterize advanced piezoelectric doped ZnO films on turbine blade materials (for example, aluminium plates) using magnetron sputtering deposition. (2) Design, fabricate and simulate thin film material SAWs and investigate their piezoelectric and acoustic wave properties, focusing on multilayer based vibration modes and thermal effects. (3) Smart icephobic surfaces and coatings (including SAW compatible superhydrophobic/SLIPS/SOCAL/CYTop/elastic coatings). (4) Thin film piezoelectric materials for integrated ice sensing and monitoring. (5) Anti-icing/de-icing performance using thin film acoustic waves with smart icephobic coating materials.
结冰(通过超冷潮湿空气、结霜、冻结冷凝或冻雨)对风力/船用涡轮机和飞机构成了重大的操作和安全挑战。对于风能发电,这些涡轮机经常遭受效率/产量的显著下降、严重损坏或事故。飞机在飞行过程中积冰会严重影响飞机的气动性能,并可能导致灾难。该项目的主要目的是研究混合智能薄材料,结合压电薄膜(如掺杂ZnO)和固有的憎冰表面/涂层,产生表面声波(SAW),用作防冰和除冰机制,以减轻风力涡轮机的实时冰问题。创新的想法是研究混合压电薄膜直接在结构表面上产生SAW,然后可以激发协同的机械热效应,用于防冰/除冰功能,并同时使用这些薄膜声波器件进行冰感测。这种开发的具有疏冰涂层的智能薄膜材料平台的一个关键优势是其无缝集成到涡轮机叶片的表面上,具有节能和无线致动/控制/传感功能。本项目的主要研究工作包括:(1)采用磁控溅射沉积技术在涡轮机叶片材料(如铝板)上设计/存款/表征先进的压电掺杂ZnO薄膜。(2)设计、制作和模拟薄膜材料SAW,研究其压电和声波特性,重点研究基于多层膜的振动模式和热效应。(3)智能疏冰表面和涂层(包括SAW兼容超疏水/SLIPS/SOCAL/CYTop/弹性涂层)。(4)用于集成冰感测和监测的薄膜压电材料。(5)使用薄膜声波和智能防冰涂层材料的防冰/除冰性能。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reduction of ice adhesion on nanostructured and nanoscale slippery surfaces
Dynamic Mitigation Mechanisms of Rime Icing with Propagating Surface Acoustic Waves.
  • DOI:
    10.1021/acs.langmuir.2c01509
  • 发表时间:
    2022-09-20
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Yang, Deyu;Haworth, Luke;Agrawal, Prashant;Tao, Ran;McHale, Glen;Torun, Hamdi;Martin, James;Luo, Jingting;Hou, Xianghui;Fu, YongQing
  • 通讯作者:
    Fu, YongQing
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

超声驱动压电效应激活门控离子通道促眼眶膜内成骨的作用及机制研究
  • 批准号:
    82371103
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目

相似海外基金

FMSG: Bio: Interface-Directed Manufacturing of Piezoelectric Biocrystal Thin Films
FMSG:生物:压电生物晶体薄膜的界面导向制造
  • 批准号:
    2328250
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development and systematization of highly-oriented layered chalcogenide piezoelectric thin films for batter-less IoT sensors
用于无电池物联网传感器的高度取向层状硫族化物压电薄膜的开发和系统化
  • 批准号:
    22KJ0244
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of high intensity and high frequency ultrasonic transducers with 3 dimensional shapes piezoelectric films for application devices.
开发用于应用设备的具有 3 维形状压电薄膜的高强度和高频超声换能器。
  • 批准号:
    22K04002
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of functional microcapsule based on piezoelectric PVDF films
基于压电PVDF薄膜的功能微胶囊的研制
  • 批准号:
    21K04701
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Controlling the polarity of ScAlN via formation of cation/anion vacancy
通过形成阳离子/阴离子空位来控制 ScAlN 的极性
  • 批准号:
    21K04168
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study about preparation methods of preferred oriented lead-free piezoelectric thick films available to use under high temperature
高温下优选取向无铅压电厚膜的制备方法研究
  • 批准号:
    20K05083
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Ultra-high performance and environment-friendly micro-energy harvesters towards self-powered micro/nano-systems for the Internet of Things
超高性能、环保型微能量收集器,面向物联网自供电微/纳米系统
  • 批准号:
    20K15146
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Orientation control of piezoelectric thin films and their application to functional micro-devices
压电薄膜取向控制及其在功能微器件中的应用
  • 批准号:
    17H03207
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of high intensity and high frequency focused ultrasonic transducers with piezoelectric films.
开发具有压电薄膜的高强度高频聚焦超声换能器。
  • 批准号:
    17K01427
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
EAPSI: In situ Structural Characterization of Lead-free, Bismuth-based Piezoelectric Thin Films
EAPSI:无铅、铋基压电薄膜的原位结构表征
  • 批准号:
    1713806
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Fellowship Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了