Analysis Of Imprinting On Mouse Distal Chromosome 7
小鼠远端染色体 7 上的印记分析
基本信息
- 批准号:6813784
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:DNA methylation animal genetic material tag animal population genetics catecholamines chromatin cytogenetics epinephrine functional /structural genomics gene expression genetic regulation genetically modified animals genomic imprinting laboratory mouse long QT syndrome norepinephrine nucleic acid sequence nucleic acid structure
项目摘要
Imprinting represents a curious defiance of normal Mendelian genetics. Mammals inherit two complete sets of chromosomes, one from the mother and one from the father, and most autosomal genes will be expressed equally from maternal and paternal alleles. Imprinted genes, however, are expressed from only one chromosome in a parent-of-origin dependent manner. Because silent and active promoters are present in a single nucleus, the differences in activity cannot be explained by transcription factor abundance. Thus the transcriptional of imprinted genes represents a clear situation in which epigenetic mechanisms restrict gene expression. Therefore imprinted genes are good models for understanding the role of DNA modifications and chromatin structure in maintaining appropriate patterns of gene expression. Further, because of parent-of-origin restricted expression, phenotypes determined by imprinted genes are not only susceptible to mutations of the genes themselves but also to disruptions in the epigenetic programs controlling regulation. Thus imprinted genes are frequently associated with human diseases, including disorders affecting cell growth, development, and behavior. Our Section is investigating a cluster of genes on the distal end of mouse chromosome 7. The syntenic region in humans on chromosome 11p15.5 is conserved in genomic organization and in monoallelic expression patterns. Specifically we are dissecting the molecular basis for the maternal specific expression of the H19 gene and the paternal specific expression of the Igf2 gene. Loss of imprinting mutations in these two genes is associated with Beckwith Wiedemann Syndrome (BWS) and with Wilms' tumor. We have demonstrated that sequences upstream of the H19 promoter are required for imprinted expression of H19 transgenes. These sequences are called the H19DMR (for differentially methylated region) because they are specifically hypermethylated only on the paternal chromosome. We have deleted this region from the endogenous locus and shown that mice inheriting this mutation paternally show biallelic expression of H19 while mice inheriting the mutation through the maternal germline show loss of repression of the normally silent Igf2 allele. Thus the H19DMR is a parent-of-origin specific silencer. By constructing alleles in which we could delete this element in specific cells and at specific developmental time points we were able to demonstrate that the DMR silences H19 and Igf2 by distinct mechanisms. Specifically, we demonstrate that the DMR contains a methylation-sensitive transcriptional insulator. Upon paternal inheritance, the DMR is methylated and the insulator is thereby inactivated, thus permitting expression of the Igf2 gene. Upon maternal inheritance, the unmethylated insulator is active and Igf2 transciption is blocked. In contrast, the methylated paternal H19DMR silences the H19 gene by directing epigenetic modifications of the H19 promoter that directly interfere with transcriptional activation. Based on these genetic studies, we have devised model systems where we imprint normally non-imprinted loci (e.g. Afp) in order to more precisely define the molecular basis for imprinting and monoallelic expression. These experiments have led to the surprising discovery that DNA methylation, although crucial for correct transcriptonal regulation, is not the primary gametic imprint.
A second focus of our research is to uncover the biological function of the Kcnq1 gene, also in this locus. This gene has been identified independently by groups looking for genes important in the etiology of BWS, a disease with parent-of-origin inheritance patterns, and for genes important in Long QT syndromes (LQTS) mapping to 11p15.5, a disease with no parent-of-origin effects. We have elucidated the complex developmental regulation of imprinting of this gene so to resolve this apparent paradox. Recently, we have developed a model for inherited LQTS by generating mice deficient in Kcnq1. In vivo ECGs from these mice show abnormal T-wave and P-wave morphologies and prolongation of the QT and JT intervals. However, ECGs of isolated hearts are normal. These changes are indicative of cardiac repolarization defects that are dependent upon some extracardiac signal. Further studies demonstrate that beta-adrenergic stimulation is the primary extracardiac signal and the molecular basis for this effect is being dissected. To address the role of beta-adrenergic stimulation in LQTS and in cardiac development and function more generally, we have developed a mouse model in which the cre recombinase enzyme is expressed in place of the Pnmt gene. Pnmt encodes the enzyme converting norepinephrine to epinephrine. Thus mice homozygous for this allele cannot make any epinephrine and thus offer a good genetic system for identifying the specific role of this hormone. Moreover, the cre recombinase expressed under control of the Pnmt promoter will, in the appropriate genetic background, mark B-adrenergic synthesizing cells and all their descendants so that the fate of these cells can be assayed. These experiments demonstrate the major source of epinephrine (and norepinephrine) in the developing embryo is actually the heart. Thus the heart supplies the catecholamines to the midgestation embryo, the only developmental timepoint when these hormones are absolutely essential for life. We have generated transgenic mice where the catecholamine synthesizing cardiac cells are marked for easy purification.
印记是对正常孟德尔遗传学的一种奇特的挑战。哺乳动物遗传了两套完整的染色体,一套来自母亲,一套来自父亲,大多数常染色体基因将从母亲和父亲的等位基因中平等地表达。然而,印迹基因仅在一条染色体上以依赖于亲本的方式表达。由于沉默启动子和活跃启动子存在于单个细胞核中,活性的差异不能用转录因子丰度来解释。因此,印迹基因的转录代表了表观遗传机制限制基因表达的明确情况。因此,印迹基因是理解DNA修饰和染色质结构在维持适当的基因表达模式中的作用的良好模型。此外,由于亲本的限制性表达,由印迹基因决定的表型不仅容易受到基因本身突变的影响,而且还容易受到控制调控的表观遗传程序的破坏。因此,印迹基因经常与人类疾病有关,包括影响细胞生长、发育和行为的疾病。本部门正在研究小鼠7号染色体远端的一组基因。人类11p15.5染色体上的共链区在基因组组织和单等位基因表达模式中是保守的。具体来说,我们正在剖析H19基因的母体特异性表达和Igf2基因的父亲特异性表达的分子基础。这两个基因的印迹突变缺失与Beckwith Wiedemann综合征(BWS)和Wilms肿瘤有关。我们已经证明H19启动子上游的序列是H19转基因印迹表达所必需的。这些序列被称为H19DMR(差异甲基化区域),因为它们只在父系染色体上特异性高甲基化。我们从内源性基因座中删除了这一区域,结果表明,通过父系遗传该突变的小鼠表现出H19的双等位基因表达,而通过母系遗传该突变的小鼠表现出对通常沉默的Igf2等位基因的抑制缺失。因此,H19DMR是一个父源特定的消音器。通过构建等位基因,我们可以在特定的细胞和特定的发育时间点删除该元件,我们能够证明DMR通过不同的机制沉默H19和Igf2。具体来说,我们证明了DMR包含一个甲基化敏感的转录绝缘子。父系遗传后,DMR被甲基化,绝缘子因此失活,从而允许Igf2基因的表达。在母体遗传中,未甲基化的绝缘子是活跃的,Igf2的转录被阻断。相比之下,甲基化的父本H19DMR通过直接干扰转录激活的H19启动子的表观遗传修饰来沉默H19基因。基于这些遗传研究,我们设计了模型系统,在其中我们印记通常非印记位点(例如Afp),以便更精确地定义印迹和单等位基因表达的分子基础。这些实验导致了一个令人惊讶的发现:DNA甲基化虽然对正确的转录调控至关重要,但并不是主要的配子印记。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karl Eric Pfeifer其他文献
Karl Eric Pfeifer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karl Eric Pfeifer', 18)}}的其他基金
Epigenetic mechanisms regulating the Igf2/H19 and Kcnq1 locus
调节 Igf2/H19 和 Kcnq1 位点的表观遗传机制
- 批准号:
8351152 - 财政年份:
- 资助金额:
-- - 项目类别:
Regulated expression and developmental functions of the H19 long noncoding RNA
H19长非编码RNA的调控表达和发育功能
- 批准号:
10685191 - 财政年份:
- 资助金额:
-- - 项目类别:
Epigenetic mechanisms regulating the Igf2/H19 and Kcnq1 locus
调节 Igf2/H19 和 Kcnq1 位点的表观遗传机制
- 批准号:
10266483 - 财政年份:
- 资助金额:
-- - 项目类别:














{{item.name}}会员




