Epigenetic mechanisms regulating the Igf2/H19 and Kcnq1 locus

调节 Igf2/H19 和 Kcnq1 位点的表观遗传机制

基本信息

项目摘要

Imprinting represents a curious defiance of normal Mendelian genetics. Mammals inherit two complete sets of chromosomes, one from the mother and one from the father, and most autosomal genes will be expressed equally from maternal and paternal alleles. Imprinted genes, however, are expressed from only one chromosome in a parent-of-origin dependent manner. Because silent and active promoters are present in a single nucleus, the differences in activity cannot be explained by transcription factor abundance. Thus, the transcription of imprinted genes represents a clear situation in which epigenetic mechanisms restrict gene expression. Therefore, imprinted genes are good models for understanding the role of DNA modifications and chromatin structure in maintaining appropriate patterns of gene expression. Further, because of parent-of-origin restricted expression, phenotypes determined by imprinted genes are not only susceptible to mutations of the genes themselves but also to disruptions in the epigenetic programs controlling regulation. Thus, imprinted genes are frequently associated with human diseases, including disorders affecting cell growth, development, and behavior. Our Section is investigating a cluster of genes on the distal end of mouse chromosome 7. The syntenic region in humans on chromosome 11p15.5 is conserved in genomic organization and in monoallelic expression patterns. Especially, we are focusing on the molecular basis for the maternal specific expression of the H19 gene and the paternal specific expression of the Igf2 gene. Loss of imprinting mutations in these two genes is associated with Beckwith Wiedemann Syndrome (BWS) and with Wilms tumor. Expression of both H19 and Igf2 is dependent upon a shared set of enhancer elements downstream of both genes. We have identified a 2.4 kb ICR (for Imprinting Control Region) upstream of the H19 promoter. Using conditional deletion and insertional mutagenesis we have identified three functions associated with this element. First, this element acts to distinguish the parental origin of any chromosome into which it is inserted. Specifically, the CpGs within this region become hypermethylated upon paternal inheritance. Second, this element functions as a CTCF-dependent, methylation-sensitive transcriptional insulator. By reorganizing the long-range interactions of nearby promoter and enhancer elements, this insulator is able to direct parental-specific activation of nearby genes. Finally, this ICR also acts as a developmentally regulated silencer element when paternally inherited. Specifically, the methylated ICR induces changes in chromatin structure of neighboring sequences that impacts gene expression. Our current goals are to identify and characterize the protein factors and non-coding RNAs that interact with the ICR and establish the chromatin structures associated with the maternal and paternal chromosomes. We are addressing these issues both in germ cells, where the imprints are established, and in somatic tissues where expression of Igf2 and H19 are most critical for normal, healthy cell function. We are also working to establish mouse models that mimic the Beckwith Wiedemann syndrome phenotypes associated with loss of imprinting at the Igf2/H19 locus in humans. Most recently we have demonstrated defects in muscle cell differentiation and in muscle regeneration in cells where Igf2/H19 imprinting is disrupted. We have demonstrated that even a <2-fold increase in Igf2 expression will result in large-scale disruption in cell cycle regulation by hyperactivation of the MAPK pathway. In addition, decreased expression of H19 disrupts normal regulation of p53 in muscle cells so that they can no longer respond to Wnt stimulation and therefore do no undergo normal hypertrophy. Thus, loss of imprinting of both H19 and Igf2 genes are relevant to overgrowth phenotypes in BWS We are now characterizing cardiac dysfunction phenotypes in these mutant animals. During early development, extra expression of Igf2 results in physiologic hypertrophy. However, hypertrophy diminishes after birth (when Igf2 expression stops) and there are no long-term health consequences. However, loss of the H19 lncRNA results in pathological hypertrophy and reduced cardiac function that progresses in the postnatal heart. Genetic analyses indicate that H19 prevents premature endothelial to mesenchymal transition. In the absence of H19, endothelial cells mis-express mesenchymal markers and adult mice show significant fibrosis. Using CRISPR-Cas9 technologies, we have generated novel mouse strains that carry mutations in specific H19 domains. These analyses demonstrate that H19 sequences that interact with let7 microRNAs are necessary to prevent cardiac fibrosis and functional defects. Finally, using in vitro models, we have learned that abrupt depletion of H19 by siRNA or by genetic ablation results in rapid onset of cellular senescence. H19 lncRNA interacts directly with p21 mRNA and both destabilizes the mRNA and inhibits protein translation. Upon loss of H19, p21 mRNA and peptide levels rise rapidly to induce senescence. A second research goal is to generate mouse models for cardiac arrhythmias. Most recently, we have generated mouse models for Calsequestrin2 deficiency. We demonstrated that calsequestrin2 is not essential for cardiac calcium ion storage. Rather, the primary function of calsequestrin appears to be the regulation of the SR calcium ion release channel during conditions of beta-adrenergic stimulation. The loss of calsequestrin2 thus results in premature calcium ion release from the SR, leading to voltage changes that result in premature contraction of cardiomyocytes and thus arrhythmia. The validity of this mouse model has been recently confirmed by demonstration that drugs that we used to successfully ameliorate the mouse arrhythmias were highly effective in pilot studies on human patients. In the past two years, we have demonstrated that mouse arrhythmias associated with calsequestrin2-deficiency worsen significantly with age. This age-dependent increase in cardiac phenotypes had already been known to occur in humans. We are now completing genomic analyses to identify genes and pathways that are dysregulated specifically in older mice where arrhythmia phenotypes are strongest. We have recently completed analyses of conditional alleles of calsequestrin 2. Casq2-deficient mice closely phenocopy the human disease. That is mice show normal heart function (but reduced heart rate) under basal conditions but develop polymorphic ventricular tachycardia (CPVT) in response to stress. Phenotypic analyses of these mice show that the CPVT phenotype is independent of developmental history. That is, the presence of arrhythmia depends on the status of Casq2 at the time of analysis with minimal influence by the hearts developmental history in regard to Casq2 gene function. Moreover, our data indicate that CPVT phenotype is dependent upon concurrent loss of Casq2 peptide in both the cardiac conduction system (CCS) and in working cardiomyocytes. The practical significance of this finding is that therapies that rescue Casq2 only in the CCS may be sufficient to prevent CPVT. In contrast to the CPVT phenotype, heart rate phenotypes are dependent only on the loss of Casq2 in the CCS. More interestingly, heart rates are dependent upon CCS developmental history. That is, heart rates are determined by two factors: 1) the status of Casq2 at the time of analysis and 2) CCS developmental history in regard to Casq2 gene function. Altogether, our data indicate that the relationship between heart rate and CPVT is complex but support the idea that reduced basal heart rate is a central contributor to increased risk of stress induced arrhythmias in Calsequestrin-deficient hearts.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Karl Eric Pfeifer其他文献

Karl Eric Pfeifer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Karl Eric Pfeifer', 18)}}的其他基金

Analysis of Imprinting on Mouse Distal Chromosome 7
小鼠远端7号染色体印记分析
  • 批准号:
    6432581
  • 财政年份:
  • 资助金额:
    $ 151.95万
  • 项目类别:
Analysis Of Imprinting On Mouse Distal Chromosome 7
小鼠远端染色体 7 上的印记分析
  • 批准号:
    6813784
  • 财政年份:
  • 资助金额:
    $ 151.95万
  • 项目类别:
Epigenetic mechanisms regulating the Igf2/H19 and Kcnq1 locus
调节 Igf2/H19 和 Kcnq1 位点的表观遗传机制
  • 批准号:
    8351152
  • 财政年份:
  • 资助金额:
    $ 151.95万
  • 项目类别:
Generating new mouse models
生成新的鼠标模型
  • 批准号:
    10908197
  • 财政年份:
  • 资助金额:
    $ 151.95万
  • 项目类别:
Analysis Of Imprinting On Mouse Distal Chromosome 7
小鼠远端染色体 7 上的印记分析
  • 批准号:
    6992966
  • 财政年份:
  • 资助金额:
    $ 151.95万
  • 项目类别:
Analysis Of Imprinting On Mouse Distal Chromosome 7
小鼠远端染色体 7 上的印记分析
  • 批准号:
    6671892
  • 财政年份:
  • 资助金额:
    $ 151.95万
  • 项目类别:
Regulated expression and developmental functions of the H19 long noncoding RNA
H19长非编码RNA的调控表达和发育功能
  • 批准号:
    10685191
  • 财政年份:
  • 资助金额:
    $ 151.95万
  • 项目类别:
Analysis Of Imprinting On Mouse Distal Chromosome 7
小鼠远端染色体 7 上的印记分析
  • 批准号:
    6541232
  • 财政年份:
  • 资助金额:
    $ 151.95万
  • 项目类别:
Analysis Of Imprinting On Mouse Distal Chromosome 7
小鼠远端染色体 7 上的印记分析
  • 批准号:
    7968609
  • 财政年份:
  • 资助金额:
    $ 151.95万
  • 项目类别:
Epigenetic mechanisms regulating the Igf2/H19 and Kcnq1 locus
调节 Igf2/H19 和 Kcnq1 位点的表观遗传机制
  • 批准号:
    8553889
  • 财政年份:
  • 资助金额:
    $ 151.95万
  • 项目类别:

相似海外基金

Targeted ablation of cerebral atherosclerosis using supramolecular self-assembly
利用超分子自组装靶向消融脑动脉粥样硬化
  • 批准号:
    24K21101
  • 财政年份:
    2024
  • 资助金额:
    $ 151.95万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
心房細動に対するPulsed Field Ablationの組織創傷治癒過程を明らかにする網羅的研究
阐明房颤脉冲场消融组织伤口愈合过程的综合研究
  • 批准号:
    24K11201
  • 财政年份:
    2024
  • 资助金额:
    $ 151.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
遅延造影心臓MRIによる心房細動Ablation冷却効果の比較:28 vs. 31 mm Cryoballoon
使用延迟对比增强心脏 MRI 比较房颤消融冷却效果:28 毫米与 31 毫米 Cryoballoon
  • 批准号:
    24K11281
  • 财政年份:
    2024
  • 资助金额:
    $ 151.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Heat Penetration Depth and Direction Control with Closed-Loop Device for Precision Ablation
职业:利用闭环装置控制热穿透深度和方向,实现精确烧蚀
  • 批准号:
    2338890
  • 财政年份:
    2024
  • 资助金额:
    $ 151.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
  • 批准号:
    2334777
  • 财政年份:
    2024
  • 资助金额:
    $ 151.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
  • 批准号:
    2334775
  • 财政年份:
    2024
  • 资助金额:
    $ 151.95万
  • 项目类别:
    Continuing Grant
InSPACE-VT_Development and Validation of Virtual Pace Mapping to Guide Catheter Ablation of Ventricular Tachycardia
InSPACE-VT_虚拟起搏测绘的开发和验证以指导室性心动过速导管消融
  • 批准号:
    EP/Z001145/1
  • 财政年份:
    2024
  • 资助金额:
    $ 151.95万
  • 项目类别:
    Fellowship
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
  • 批准号:
    2334776
  • 财政年份:
    2024
  • 资助金额:
    $ 151.95万
  • 项目类别:
    Continuing Grant
Cryo laser-ablation system (157+193nm) with 'triple-quad' plasma mass spectrometer, Cryo-LA-ICPMS/MS
带有“三重四极杆”等离子体质谱仪、Cryo-LA-ICPMS/MS 的冷冻激光烧蚀系统 (157 193nm)
  • 批准号:
    515081333
  • 财政年份:
    2023
  • 资助金额:
    $ 151.95万
  • 项目类别:
    Major Research Instrumentation
MRI: Acquisition of a Laser Ablation - Inductively Coupled Plasma - Triple Quadrupole - Mass Spectrometer (LA-ICP-QQQ-MS) System For Research and Education
MRI:获取用于研究和教育的激光烧蚀 - 电感耦合等离子体 - 三重四极杆 - 质谱仪 (LA-ICP-MS/MS) 系统
  • 批准号:
    2320040
  • 财政年份:
    2023
  • 资助金额:
    $ 151.95万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了