Triplet Repeat Instability in Yeast and Human Cells

酵母和人类细胞中的三联体重复不稳定性

基本信息

  • 批准号:
    6830491
  • 负责人:
  • 金额:
    $ 28.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-07-01 至 2008-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): An unusual type of genetic mutation-trinucleotide repeat expansion-causes Huntington's disease and 14 other neurodegenerative disorders. The first disease-causing TNR expansions were reported only in 1991, so there is still much to learn about their mechanistic roots. In addition to their medical relevance, the genetics of trinucleotide repeats (TNRs) are unique and complex. It is now clear that TNR expansions and contractions occur by multiple genetic mechanisms, including aberrant DNA replication, repair, and possibly gene conversion. The goal of this work is to define more thoroughly how DNA replication and repair contribute to TNR instability in yeast and in primate (human and simian) cells. Mechanistic similarities between yeast and primate cells will help delineate important fundamental properties that govern triplet repeat alterations. For example, the identification of yeast genetic pathways affecting TNRs should help clarify the roles of homologous human pathways. Differences between yeast and primate cells may help resolve certain issues, such as the strong tendency towards expansions in humans which has not been recapitulated in model systems. One unique facet of our proposal is to better understand thresholds. The threshold is a distinctive but enigmatic feature of TNRs where instability changes dramatically over a narrow range of tract lengths. We detected thresholds in both yeast and primate cells, and we propose to dissect them genetically. To help achieve our goal, we developed genetic assays for the direct selection of TNR expansions or contractions. Repeats are inserted into a promoter-reporter construct such that the TNR length determines reporter gene expression. Variations in TNR length are revealed as changes in the reporter phenotype. These selective assays provide several major advantages, including sensitivity, quantitation, and flexibility. We believe the innovative nature of our genetic assays, and our application of those assays to important model systems, will continue to help advance the field of TNR genetics.
描述(由申请人提供):一种不寻常的遗传突变--三核苷酸重复扩增--导致亨廷顿病和14种其他神经退行性疾病。直到1991年才报道了第一次导致疾病的TNR扩张,因此关于其机制根源仍有很多东西需要了解。除了它们的医学相关性之外,三核苷酸重复序列(TNR)的遗传学是独特和复杂的。现在很清楚,TNR的扩张和收缩是通过多种遗传机制发生的,包括异常的DNA复制、修复和可能的基因转换。这项工作的目标是更彻底地定义DNA复制和修复如何导致酵母和灵长类(人类和猿)细胞中的TNR不稳定性。酵母和灵长类动物细胞之间的机制相似性将有助于描绘重要的基本属性,管理三重重复序列的改变。例如,确定影响TNR的酵母遗传途径应有助于澄清同源人类途径的作用。酵母和灵长类动物细胞之间的差异可能有助于解决某些问题,例如在模型系统中没有重现的人类扩张的强烈趋势。我们提案的一个独特方面是更好地理解阈值。阈值是TNR的一个独特但神秘的特征,其中不稳定性在狭窄的道长度范围内急剧变化。我们在酵母和灵长类动物细胞中都检测到了阈值,我们建议从遗传学上对它们进行解剖。为了帮助实现我们的目标,我们开发了用于直接选择TNR扩增或收缩的遗传测定。将重复插入启动子-报告基因构建体中,使得TNR长度决定报告基因表达。TNR长度的变化显示为报告表型的变化。这些选择性测定提供了几个主要优点,包括灵敏度、定量和灵活性。我们相信,我们基因检测的创新性,以及我们将这些检测应用于重要的模型系统,将继续帮助推进TNR遗传学领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert S Lahue其他文献

Robert S Lahue的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert S Lahue', 18)}}的其他基金

2014 Mutagenesis Gordon Research Conference
2014年诱变戈登研究会议
  • 批准号:
    8707092
  • 财政年份:
    2014
  • 资助金额:
    $ 28.67万
  • 项目类别:
Large Loop DNA Repair in Yeast
酵母中的大环 DNA 修复
  • 批准号:
    6464166
  • 财政年份:
    2002
  • 资助金额:
    $ 28.67万
  • 项目类别:
Large Loop DNA Repair in Yeast
酵母中的大环 DNA 修复
  • 批准号:
    6706383
  • 财政年份:
    2002
  • 资助金额:
    $ 28.67万
  • 项目类别:
Large Loop DNA Repair in Yeast
酵母中的大环 DNA 修复
  • 批准号:
    6623247
  • 财政年份:
    2002
  • 资助金额:
    $ 28.67万
  • 项目类别:
Large Loop DNA Repair in Yeast
酵母中的大环 DNA 修复
  • 批准号:
    6852648
  • 财政年份:
    2002
  • 资助金额:
    $ 28.67万
  • 项目类别:
Triplet Repeat Instability in Yeast and Human Cells
酵母和人类细胞中的三联体重复不稳定性
  • 批准号:
    6916450
  • 财政年份:
    2000
  • 资助金额:
    $ 28.67万
  • 项目类别:
Triplet Repeat Instability in Yeast and Human Cells
酵母和人类细胞中的三联体重复不稳定性
  • 批准号:
    7082215
  • 财政年份:
    2000
  • 资助金额:
    $ 28.67万
  • 项目类别:
TRIPLET REPEAT INSTABILITY IN YEAST AND HUMAN CELLS
酵母和人类细胞中的三重重复不稳定性
  • 批准号:
    6636518
  • 财政年份:
    2000
  • 资助金额:
    $ 28.67万
  • 项目类别:
TRIPLET REPEAT INSTABILITY IN YEAST AND HUMAN CELLS
酵母和人类细胞中的三重重复不稳定性
  • 批准号:
    6387266
  • 财政年份:
    2000
  • 资助金额:
    $ 28.67万
  • 项目类别:
TRIPLET REPEAT INSTABILITY IN YEAST AND HUMAN CELLS
酵母和人类细胞中的三重重复不稳定性
  • 批准号:
    6520336
  • 财政年份:
    2000
  • 资助金额:
    $ 28.67万
  • 项目类别:

相似海外基金

Determining the role of the prolyl cis-trans isomerase Cyclophilin A in DNA Repair at stalled DNA replication forks.
确定脯氨酰顺反异构酶亲环蛋白 A 在停滞 DNA 复制叉处的 DNA 修复中的作用。
  • 批准号:
    MR/T012978/1
  • 财政年份:
    2020
  • 资助金额:
    $ 28.67万
  • 项目类别:
    Research Grant
Functional synergy between the DNA topology and DNA repair machineries during the initiation of DNA replication
DNA复制启动过程中DNA拓扑结构和DNA修复机制之间的功能协同作用
  • 批准号:
    312500-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 28.67万
  • 项目类别:
    Discovery Grants Program - Individual
Functional synergy between the DNA topology and DNA repair machineries during the initiation of DNA replication
DNA复制启动过程中DNA拓扑结构和DNA修复机制之间的功能协同作用
  • 批准号:
    312500-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 28.67万
  • 项目类别:
    Discovery Grants Program - Individual
Functional synergy between the DNA topology and DNA repair machineries during the initiation of DNA replication
DNA复制启动过程中DNA拓扑结构和DNA修复机制之间的功能协同作用
  • 批准号:
    312500-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 28.67万
  • 项目类别:
    Discovery Grants Program - Individual
Global regulation of DNA replication, transcription and DNA repair by Rif1 protein
Rif1 蛋白对 DNA 复制、转录和 DNA 修复的全局调控
  • 批准号:
    25840081
  • 财政年份:
    2013
  • 资助金额:
    $ 28.67万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Functional synergy between the DNA topology and DNA repair machineries during the initiation of DNA replication
DNA复制启动过程中DNA拓扑结构和DNA修复机制之间的功能协同作用
  • 批准号:
    312500-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 28.67万
  • 项目类别:
    Discovery Grants Program - Individual
Functional synergy between the DNA topology and DNA repair machineries during the initiation of DNA replication
DNA复制启动过程中DNA拓扑结构和DNA修复机制之间的功能协同作用
  • 批准号:
    312500-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 28.67万
  • 项目类别:
    Discovery Grants Program - Individual
An investigation of DNA repair processes during DNA replication using the archaeon, Sulfolobus, as a model organism.
使用古细菌 Sulfolobus 作为模式生物,研究 DNA 复制过程中的 DNA 修复过程。
  • 批准号:
    G0701443/1
  • 财政年份:
    2009
  • 资助金额:
    $ 28.67万
  • 项目类别:
    Fellowship
DNA replication, DNA repair and microsatellite stability
DNA 复制、DNA 修复和微卫星稳定性
  • 批准号:
    6993555
  • 财政年份:
    2005
  • 资助金额:
    $ 28.67万
  • 项目类别:
DNA replication, DNA repair and microsatellite stability
DNA 复制、DNA 修复和微卫星稳定性
  • 批准号:
    7535534
  • 财政年份:
    2005
  • 资助金额:
    $ 28.67万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了