Expanding and Assembling Approaches to Improve Decisions on Identification and Classification of Online Terrorist Content

扩展和组合方法来改进在线恐怖内容的识别和分类决策

基本信息

  • 批准号:
    2440634
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

Improving knowledge of online terrorist ecosystems is urgently needed to develop counter measures effectively and responsibly. The aim of this project is to develop new methods for predicting terrorist and extremist behaviour on the Internet. Accurate models of behavioural patterns will allow the predictionof communication channels and make content discovery (and removal) strategies more effective by expanding technological approaches deployed (including managing discovery- /open-source intelligence and interacting with platforms to improve decisions via machine learning) and scoping opportunities to combine approaches into ensemble models, such as combining predictive algorithms. This PhD project aims to apply state of the art and novel algorithmic techniques to classify data, and behaviours related to extremism by developing human-centred processes to clean bias and noise from the data that will be collected from a range of social media platforms. To achieve our aims, firstly, we will use the TCAP platform that will provide us support on getting access to collecting data from a range of social media platform in different media forms (PDF, URL,HTML, audio and videos). The raw data will be converted into a workable dataset such as SQLite, or csv file format. Secondly, to remove noise and bias from the data, we will facilitate a user-centred design process in which we will develop an interactive process that will enable extremist domain experts to perform complex text extraction tasks at scale, as described in [5,7]. The tool will enable users to remove noise in quantifiable ways which will consequently allow us to squeeze the feedback loop between the cleaning process and the user. Thirdly, we will apply novel algorithmic techniques to classify data, and behaviours related to extremism. This will include ensemble methods and/or deep learning techniques. An approach can be based on sentiment-based deep learning models (LSTM+CNN) to classify extremist and non-extremist content [8]. We will apply the process on a closed set of data in the following way. We will focus on analyzing the past occurrences where terrorist organisations have used different platforms to spread propaganda. This project will select one of the recent historical terrorist attacks and will analyze the use of social media by terrorist across these four stages of the attacks. Here, we can use the existing data (from TCAP) during the four different time frames of an attack. In the first step, the student will generate a dataset around user interactions during the four stages. In the second stage, an interactive user centered process will be followed that will help clean the data by involving domain experts. Note, we will consider factors to avoid overfitting during this process. In the third and final step, we will apply state-of-the-art machine learning models such as sentiment-based deep learning, and/or ensemble models to develop classifiers for identifying the type of extremist contents. User-studies will be conducted at major milestones to rate the decisionsupport provided by the machine learning models and to ensure the decisions are justifiable and do not violate the principle of freedom of speech.In summary, the following contributions are anticipated. An interactive, user-centered tool that enables extremism domain experts to assist with data cleaning and removing bias. A range of classifiers to predict the class of different type of extremist contents on a dataset which will be made available publicly to inform future research. The project will investigate the effectiveness of classification for the purpose of content restriction focused on terrorist activity and propaganda. The methodology and technology developed will be scrutinised for its possible unintended use, such attacks on democracy, undue influencing of political decisions, and other fraudulent behaviour, or deliberate introduction of biases into the social media landscape.
迫切需要加强对网上恐怖主义生态系统的了解,以有效和负责任地制定应对措施。该项目的目的是开发预测因特网上恐怖主义和极端主义行为的新方法。行为模式的准确模型将允许预测通信渠道,并通过扩大所采用的技术方法(包括管理发现/开源智能和与平台互动以通过机器学习改进决策)和确定将联合收割机方法结合成整体模型的机会(例如结合预测算法),使内容发现(和删除)战略更加有效。这个博士项目旨在应用最先进的技术和新颖的算法技术来分类数据,并通过开发以人为本的过程来清除将从一系列社交媒体平台收集的数据中的偏见和噪音,从而对与极端主义有关的行为进行分类。为了实现我们的目标,首先,我们将使用TCAP平台,该平台将为我们提供支持,以不同的媒体形式(PDF,URL,HTML,音频和视频)从一系列社交媒体平台收集数据。原始数据将被转换成一个可用的数据集,如SQLite或CSV文件格式。其次,为了消除数据中的噪音和偏见,我们将促进以用户为中心的设计过程,在该过程中,我们将开发一个交互式过程,使极端主义领域专家能够大规模执行复杂的文本提取任务,如[5,7]所述。该工具将使用户能够以可量化的方式消除噪音,从而使我们能够挤压清洁过程和用户之间的反馈回路。第三,我们将应用新的算法技术对数据和与极端主义有关的行为进行分类。这将包括集成方法和/或深度学习技术。一种方法可以基于基于情感的深度学习模型(LSTM+CNN)来分类极端主义和非极端主义内容[8]。我们将以下面的方式在一个封闭的数据集上应用该过程。我们将集中分析恐怖组织利用不同平台进行宣传的过去事件。该项目将选择最近的历史恐怖袭击之一,并将分析恐怖分子在袭击的四个阶段中使用社交媒体的情况。在这里,我们可以使用攻击的四个不同时间段内的现有数据(来自TCAP)。在第一步中,学生将围绕四个阶段中的用户交互生成一个数据集。在第二阶段,将遵循一个以用户为中心的交互式过程,这将有助于通过涉及领域专家来清理数据。请注意,我们将考虑在此过程中避免过拟合的因素。在第三步,也是最后一步,我们将应用最先进的机器学习模型,如基于情感的深度学习和/或集成模型来开发用于识别极端主义内容类型的分类器。用户研究将在重要的里程碑进行,以评估机器学习模型提供的决策支持,并确保决策是合理的,不违反言论自由的原则。一个交互式的,以用户为中心的工具,使极端主义领域的专家,以协助数据清理和消除偏见。一系列分类器,用于预测数据集上不同类型的极端主义内容的类别,该数据集将公开提供,以告知未来的研究。该项目将调查为限制重点针对恐怖主义活动和宣传的内容而进行分类的有效性。开发的方法和技术将被审查其可能的非故意使用,例如对民主的攻击,对政治决策的不当影响,以及其他欺诈行为,或故意将偏见引入社交媒体领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Assembling the building blocks in the blueprint of the embryonic head
在胚胎头部的蓝图中组装积木
  • 批准号:
    DP240101571
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
NSF Convergence Accelerator Track M: Slime Mold Inspired Self-Assembling Conveyor System for Flood Response
NSF 融合加速器轨道 M:受粘菌启发的用于洪水响应的自组装输送系统
  • 批准号:
    2344289
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Assembling the foundation of modern mammal community structure in the first 7 million years after the K/Pg mass extinction
合作研究:为 K/Pg 大规模灭绝后的前 700 万年建立现代哺乳动物群落结构的基础
  • 批准号:
    2321344
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Architecting DNA Nanodevices into Metamaterials, Transducing Materials, and Assembling Materials
DMREF/合作研究:将 DNA 纳米器件构建为超材料、转换材料和组装材料
  • 批准号:
    2323968
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Self-Assembling Peptide Nanoparticles for in vivo Genome Editor Delivery to Hematopoietic Stem Cells
用于体内基因组编辑器递送至造血干细胞的自组装肽纳米颗粒
  • 批准号:
    10605021
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Self-Assembling Camptothecin Nanofiber Hydrogels as Adjunct Therapy for Intraoperative Treatment of Malignant Glioma
自组装喜树碱纳米纤维水凝胶作为恶性胶质瘤术中治疗的辅助疗法
  • 批准号:
    10738545
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
DMREF/Collaborative Research: Architecting DNA Nanodevices into Metamaterials, Transducing Materials, and Assembling Materials
DMREF/合作研究:将 DNA 纳米器件构建为超材料、转换材料和组装材料
  • 批准号:
    2323969
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RNA delivery by self-assembling phagocytic-competent protein crystals
通过自组装具有吞噬能力的蛋白质晶体进行 RNA 递送
  • 批准号:
    10067767
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
CAREER: Representing, Discovering, and Assembling Motifs for Video Understanding
职业:表示、发现和组装视频理解的主题
  • 批准号:
    2238769
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Assembling the foundation of modern mammal community structure in the first 7 million years after the K/Pg mass extinction
合作研究:为 K/Pg 大规模灭绝后的前 700 万年建立现代哺乳动物群落结构的基础
  • 批准号:
    2321341
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了