Novel Real-Time Algorithms:Quantifying Wake-Sleep States

新颖的实时算法:量化唤醒睡眠状态

基本信息

  • 批准号:
    6838292
  • 负责人:
  • 金额:
    $ 17.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-09-27 至 2007-02-28
  • 项目状态:
    已结题

项目摘要

The overall goal of this project is to develop and clinically validate a novel class of computerized EEG-based algorithms and sophisticated signal processing methods designed for high temporal resolution characterization of the wake-sleep transition and fluctuations within sleep stages. In addition to their capability of profiling wakefulness and various sleep stages as a continuous process, these algorithms will be developed in a format such that they can be eventually implemented for real-time detection of wake-to sleep transitions. The new approach of this proposal is based on an innovative interaction of classically independent signal processing methods for quantifying EEG, including traditional Short-Term Fourier Transform, Recursive Auto-regressive Parameter Estimation, and Wavelet analysis. This new approach takes advantage of each method's relative strength and "fuses" the information obtained from each technique to provide a means of quantifying the entire wake-sleep transition with high temporal resolution (e.g., early detection of sleep onset) while being robust to factors that normally degrade EEG processing. The developed algorithms will be validated with an extensive set of clinical data including nocturnal polysomnography, and day-time tests of Sleepiness, MSLT (Multiple Sleep Latency Test) and MWT (Maintenance of Wakefulness Test). The dynamic events detected by these algorithms (e.g., micro-arousals and micro-sleeps) will be evaluated against standard R&K scoring of the same EEG data. Furthermore, the profile and characteristics of the events detected in PSG will be correlated with the daytime objective and subjective tests of sleepiness.
该项目的总体目标是开发和临床验证一种新型的计算机化的 基于EEG的算法和复杂的信号处理方法, 睡眠阶段内的觉醒-睡眠过渡和波动的分辨率表征。除了将清醒和各种睡眠阶段作为一个连续过程进行分析的能力之外,这些算法还将以一种格式进行开发,使得它们最终可以实现对清醒到睡眠过渡的实时检测。该建议的新方法是基于一个创新的相互作用的经典独立的信号处理方法量化EEG,包括传统的短期傅立叶变换,递归自回归参数估计,小波分析。 这种新方法利用了每种方法的相对强度,并“融合”了从每种技术获得的信息,以提供一种以高时间分辨率量化整个唤醒-睡眠过渡的手段(例如,睡眠开始的早期检测),同时对通常使EEG处理降级的因素是鲁棒的。开发的算法将通过一组广泛的临床数据进行验证,包括夜间多导睡眠图,以及白天的嗜睡测试,MPERT(多次睡眠潜伏期测试)和MWT(保持清醒测试)。由这些算法检测到的动态事件(例如,微觉醒和微睡眠)将针对相同EEG数据的标准R&K评分进行评估。此外,PSG中检测到的事件的轮廓和特征将被 与白天的客观和主观测试嗜睡。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MO MODARRES其他文献

MO MODARRES的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MO MODARRES', 18)}}的其他基金

Neurophysiology Markers of PTSD's Presence, Severity, and Therapy Outcome
PTSD 存在、严重程度和治疗结果的神经生理学标志
  • 批准号:
    10597972
  • 财政年份:
    2020
  • 资助金额:
    $ 17.68万
  • 项目类别:
The use of qEEG in predicting relapse among AUD Veterans to improve treatment and function
使用 qEEG 预测 AUD 退伍军人的复发,以改善治疗和功能
  • 批准号:
    10311100
  • 财政年份:
    2020
  • 资助金额:
    $ 17.68万
  • 项目类别:
Neurophysiology Markers of PTSD's Presence, Severity, and Therapy Outcome
PTSD 存在、严重程度和治疗结果的神经生理学标志
  • 批准号:
    10322645
  • 财政年份:
    2020
  • 资助金额:
    $ 17.68万
  • 项目类别:
Sleep-EEG Predictors of Functional Outcome after TBI
TBI 后功能结果的睡眠脑电图预测因子
  • 批准号:
    9136515
  • 财政年份:
    2016
  • 资助金额:
    $ 17.68万
  • 项目类别:
Field Deployable, Automatic, EEG Seizure Detector and Brain Dysfunction Monitor
现场可部署、自动、EEG 癫痫检测器和脑功能障碍监视器
  • 批准号:
    7223376
  • 财政年份:
    2006
  • 资助金额:
    $ 17.68万
  • 项目类别:
Field Deployable, Automatic, EEG Seizure Detector and Brain Dysfunction Monitor
现场可部署、自动、EEG 癫痫检测器和脑功能障碍监测器
  • 批准号:
    7680702
  • 财政年份:
    2006
  • 资助金额:
    $ 17.68万
  • 项目类别:
Field Deployable, Automatic, EEG Seizure Detector and Brain Dysfunction Monitor
现场可部署、自动、EEG 癫痫检测器和脑功能障碍监视器
  • 批准号:
    7450907
  • 财政年份:
    2006
  • 资助金额:
    $ 17.68万
  • 项目类别:
Field Deployable, Automatic, EEG Seizure Detector and Brain Dysfunction Monitor
现场可部署、自动、EEG 癫痫检测器和脑功能障碍监测器
  • 批准号:
    7294881
  • 财政年份:
    2006
  • 资助金额:
    $ 17.68万
  • 项目类别:
Field Deployable, Automatic, EEG Seizure Detector and Brain Dysfunction Monitor
现场可部署、自动、EEG 癫痫检测器和脑功能障碍监视器
  • 批准号:
    7680708
  • 财政年份:
    2006
  • 资助金额:
    $ 17.68万
  • 项目类别:
Ambulatory Sleepiness & Apnea Propensity Evaluation Syst
动态嗜睡
  • 批准号:
    6884221
  • 财政年份:
    2005
  • 资助金额:
    $ 17.68万
  • 项目类别:

相似海外基金

TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
  • 批准号:
    10093095
  • 财政年份:
    2024
  • 资助金额:
    $ 17.68万
  • 项目类别:
    Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
  • 批准号:
    10106704
  • 财政年份:
    2024
  • 资助金额:
    $ 17.68万
  • 项目类别:
    EU-Funded
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
  • 批准号:
    DP240100602
  • 财政年份:
    2024
  • 资助金额:
    $ 17.68万
  • 项目类别:
    Discovery Projects
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
  • 批准号:
    MR/Y009657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.68万
  • 项目类别:
    Fellowship
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:Cyber​​AI:利用人工智能实现智能系统的网络安全解决方案
  • 批准号:
    2349104
  • 财政年份:
    2024
  • 资助金额:
    $ 17.68万
  • 项目类别:
    Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    $ 17.68万
  • 项目类别:
    Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343607
  • 财政年份:
    2024
  • 资助金额:
    $ 17.68万
  • 项目类别:
    Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
  • 批准号:
    2409130
  • 财政年份:
    2024
  • 资助金额:
    $ 17.68万
  • 项目类别:
    Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
  • 批准号:
    2414141
  • 财政年份:
    2024
  • 资助金额:
    $ 17.68万
  • 项目类别:
    Standard Grant
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
  • 批准号:
    23K22068
  • 财政年份:
    2024
  • 资助金额:
    $ 17.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了