MSM Multiscale Human Respiratory System Simulations to Study Health Effects

MSM 多尺度人体呼吸系统模拟研究健康影响

基本信息

  • 批准号:
    7032088
  • 负责人:
  • 金额:
    $ 17.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-09-26 至 2008-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): A multi-scale strategy is proposed to develop, couple, apply, and validate multimodality imaging and physics modeling of resolvable and sub-resolvable scales in human respiration. High-resolution computed tomography (HRCT) will be used to characterize the "macroscale" convective range of the lung. Microscopic computed tomography (.CT), and confocal microscopy (CLSM), will be used to characterize the "microscale" global and cellular architectures of the respiratory units. Multiphase computational fluid dynamics and quasi-one-dimensional functional modeling will be used to simulate the multi-component fluid mechanics at the macro- and micro-scales, respectively. Software infrastructure and two-phase fluid mechanics models will be developed to address the coupling between the physics at these two scales. Model predictions will be validated against experimental and clinical data from the literature. A novel and critical element of the proposed research is that the interfaces between functional biological scales will be developed using recent dimension-reducing coupling strategies developed in the nuclear reactor safety/simulation community, and multidisciplinary data-exchange standards developed in the aerospace sciences community. Coupling technologies will be developed between macro- and microscales, and between imaging and physical modeling; these will yield a system-level model that accommodates the critical two-way coupling between convective respiration physics and uptake, deposition, and disease-state morphology. Such an integrated approach will elucidate heretofore inaccessible physical understanding, dependencies, and treatment implications. The coupling software to be developed will be modular and open-source so other investigators can "plug-in" their models at the macro- and micro-scales, and/or evolve the system to other organs or human systems such as the liver or kidney. The ultimate public health goal of the research is improved understanding of respiratory function and disease, and evaluation/assessments of the effects of therapies, injury, surgical intervention, and aging on lung structure and function. The physics-based coupling between multiple scales is a critical step towards a complete integrated physiological model of the human respiratory system: a "virtual human lung."
描述(由申请人提供):提出了一种多尺度策略,用于开发、耦合、应用和验证人体呼吸中可分辨和亚可分辨尺度的多模态成像和物理建模。高分辨率计算机断层扫描(HRCT)将用于表征肺的“宏观”对流范围。将使用显微计算机断层扫描(.CT)和共聚焦显微镜(CLSM)来表征呼吸单位的“微尺度”全局和细胞架构。多相计算流体动力学和准一维函数模型将分别用于模拟宏观和微观尺度的多组分流体力学。将开发软件基础设施和两相流体力学模型,以解决这两个尺度的物理之间的耦合。模型预测将根据文献中的实验和临床数据进行验证。拟议的研究的一个新的和关键的要素是,功能生物尺度之间的接口将开发使用最近的降维耦合策略在核反应堆安全/模拟社区,和多学科的数据交换标准在航空航天科学界开发。耦合技术将在宏观尺度和微观尺度之间以及成像和物理建模之间开发;这些将产生一个系统级模型,该模型可容纳对流呼吸物理学与摄取,沉积和疾病状态形态之间的关键双向耦合。这样一种综合的方法将阐明迄今为止无法理解的物理理解,依赖性和治疗的影响。将开发的耦合软件将是模块化和开源的,因此其他研究人员可以在宏观和微观尺度上“插入”他们的模型,和/或将系统发展到其他器官或人类系统,如肝脏或肾脏。该研究的最终公共卫生目标是提高对呼吸功能和疾病的理解,并评估/评估治疗,损伤,手术干预和老化对肺结构和功能的影响。多尺度之间基于物理的耦合是实现人体呼吸系统完整集成生理模型的关键一步:“虚拟人肺”。"

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Francis Kunz其他文献

Dropwise CondensationWater Drainage Model
滴状冷凝排水模型

Robert Francis Kunz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Francis Kunz', 18)}}的其他基金

MSM Multiscale Human Respiratory System Simulations to Study Health Effects
MSM 多尺度人体呼吸系统模拟研究健康影响
  • 批准号:
    7271122
  • 财政年份:
    2005
  • 资助金额:
    $ 17.78万
  • 项目类别:
MSM Multiscale Human Respiratory System Simulations to Study Health Effects
MSM 多尺度人体呼吸系统模拟研究健康影响
  • 批准号:
    7126078
  • 财政年份:
    2005
  • 资助金额:
    $ 17.78万
  • 项目类别:

相似海外基金

FORTIFY - From Molecular Physiology to Biophysics of the Glymphatic System: a Regulatory Role for Aquaporin-4
FORTIFY - 从类淋巴系统的分子生理学到生物物理学:Aquaporin-4 的调节作用
  • 批准号:
    EP/Y023684/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Research Grant
The Biophysics of Mesoscale, Reversible, Biomolecular Assemblies
中尺度可逆生物分子组装的生物物理学
  • 批准号:
    EP/Y000501/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Fellowship
Structure and Function of Cullin3 E3 ligase complexes
Cullin3 E3 连接酶复合物的结构和功能
  • 批准号:
    489003
  • 财政年份:
    2023
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Operating Grants
Biophysics of the brain’s waste disposal system: Understanding why we sleep
大脑废物处理系统的生物物理学:了解我们为什么睡觉
  • 批准号:
    DP230101113
  • 财政年份:
    2023
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Discovery Projects
Molecular basis of glycan recognition by T and B cells
T 和 B 细胞识别聚糖的分子基础
  • 批准号:
    10549648
  • 财政年份:
    2023
  • 资助金额:
    $ 17.78万
  • 项目类别:
Structural Biology Core
结构生物学核心
  • 批准号:
    10549644
  • 财政年份:
    2023
  • 资助金额:
    $ 17.78万
  • 项目类别:
CAREER: Surfactant Proteins that Stabilize Biomolecular Condensates: From Biophysics to Biomaterials for Biomanufacturing
职业:稳定生物分子缩合物的表面活性剂蛋白:从生物物理学到生物制造的生物材料
  • 批准号:
    2238914
  • 财政年份:
    2023
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Continuing Grant
Decoding the functional pleiotropy of IL-20Rβ ligands in inflammation and tumorigenesis
解码 IL-20Rβ 配体在炎症和肿瘤发生中的功能多效性
  • 批准号:
    10350447
  • 财政年份:
    2023
  • 资助金额:
    $ 17.78万
  • 项目类别:
Research Project 2
研究项目2
  • 批准号:
    10403256
  • 财政年份:
    2023
  • 资助金额:
    $ 17.78万
  • 项目类别:
Deciphering the mechanics of microtubule networks in mitosis
破译有丝分裂中微管网络的机制
  • 批准号:
    10637323
  • 财政年份:
    2023
  • 资助金额:
    $ 17.78万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了