Improved Protein Mapping for Fragment-Based Drug Design

改进的基于片段的药物设计的蛋白质图谱

基本信息

  • 批准号:
    6994572
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-09-15 至 2006-09-14
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Computational solvent mapping methods place molecular probes - small molecules or functional groups - on a protein surface in order to identify the most favorable binding positions. Although X-ray crystallography and NMR show that small organic molecules preferentially cluster in the binding site, current computational methods yield hundreds of energy minima on the surface of the protein, and it is difficult to determine which of the minima are relevant. The Structural Bioinformatics Group at Boston University has developed a novel mapping algorithm that generally eliminates the spurious local minima, and finds the bound positions of small organic probe molecules in good agreement with x-ray or NMR data. The major applications of the method so far have been delineating the active sites of enzymes and other proteins, and detecting minor conformational changes in ligand binding sites. The general goal of the present proposal is to develop this efficient and highly accurate mapping algorithm into the first step of a fragment-based drug design procedure, and apply the method to drug targets that are known to be difficult, thereby developing a scientific and commercial base for collaborative agreements. The Phase I Specific Aims are as follows: (1) modifying the mapping program as required for fragment-based drug design, including improvements in the initial placement of the probes, facilitating the addition of new probes, introducing a more general empirical potential, and improving the evaluation of probe distributions after the mapping; (2) developing optimal fragment libraries by the fragmentation of molecules in databases of pharmaceutically active compounds and then clustering the resulting fragments; and (3) developing a high throughput automated protein mapping software package with appropriate storage, retrieval and analysis of results. We expect that the mapping will correctly place fragments derived from known ligands when mapping either bound or ligand-free protein structures. Using both general and focused fragment libraries, we will explore the binding sites of several important drug targets, including peroxisome proliferator activated receptors (PPPARs), protein tyrosine phosphatase IB (FTP1B), some protein kinases, and cytochrome P450s. Preliminary results suggest that mapping with fragments from well designed libraries will provide very useful information for drug design.
描述(由申请人提供):计算溶剂作图方法将分子探针-小分子或官能团-放置在蛋白质表面,以确定最有利的结合位置。尽管x射线晶体学和核磁共振显示小有机分子优先聚集在结合位点,但目前的计算方法在蛋白质表面产生了数百个能量最小值,很难确定哪些最小值是相关的。波士顿大学的结构生物信息学小组开发了一种新的映射算法,该算法通常可以消除虚假的局部极小值,并找到与x射线或核磁共振数据非常一致的小有机探针分子的结合位置。到目前为止,该方法的主要应用是描述酶和其他蛋白质的活性位点,以及检测配体结合位点的微小构象变化。本提案的总体目标是将这种高效和高度精确的映射算法发展成为基于片段的药物设计程序的第一步,并将该方法应用于已知困难的药物靶标,从而为合作协议建立科学和商业基础。第一阶段的具体目标如下:(1)根据基于片段的药物设计的需要修改绘图程序,包括改进探针的初始放置,促进新探针的添加,引入更一般的经验潜力,以及改进绘图后探针分布的评估;(2)通过对药物活性化合物数据库中的分子进行碎片化,建立最优的片段文库,并对片段进行聚类;(3)开发高通量自动化蛋白质图谱软件包,具有相应的结果存储、检索和分析功能。我们期望在绘制结合或无配体的蛋白质结构时,能正确地定位来自已知配体的片段。利用一般和重点片段文库,我们将探索几个重要药物靶点的结合位点,包括过氧化物酶体增殖物激活受体(PPPARs)、蛋白酪氨酸磷酸酶IB (FTP1B)、一些蛋白激酶和细胞色素p450。初步结果表明,从设计良好的文库中绘制片段将为药物设计提供非常有用的信息。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SANDOR VAJDA其他文献

SANDOR VAJDA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SANDOR VAJDA', 18)}}的其他基金

Analysis and Prediction of Molecular Interactions
分子相互作用的分析和预测
  • 批准号:
    10175504
  • 财政年份:
    2016
  • 资助金额:
    $ 10万
  • 项目类别:
Analysis and Prediction of Molecular Interactions
分子相互作用的分析和预测
  • 批准号:
    10410497
  • 财政年份:
    2016
  • 资助金额:
    $ 10万
  • 项目类别:
Analysis and prediction of molecular interactions
分子相互作用的分析和预测
  • 批准号:
    9920157
  • 财政年份:
    2016
  • 资助金额:
    $ 10万
  • 项目类别:
Analysis and prediction of molecular interactions
分子相互作用的分析和预测
  • 批准号:
    9070917
  • 财政年份:
    2016
  • 资助金额:
    $ 10万
  • 项目类别:
Analysis and Prediction of Molecular Interactions
分子相互作用的分析和预测
  • 批准号:
    10596186
  • 财政年份:
    2016
  • 资助金额:
    $ 10万
  • 项目类别:
Analysis and prediction of molecular interactions
分子相互作用的分析和预测
  • 批准号:
    9256506
  • 财政年份:
    2016
  • 资助金额:
    $ 10万
  • 项目类别:
High-throughput portable software for fragment-based drug design
用于基于片段的药物设计的高通量便携式软件
  • 批准号:
    8124328
  • 财政年份:
    2011
  • 资助金额:
    $ 10万
  • 项目类别:
Computational Mapping of Proteins for Binding of Ligands
配体结合的蛋白质计算图谱
  • 批准号:
    7818904
  • 财政年份:
    2009
  • 资助金额:
    $ 10万
  • 项目类别:
Modeling of Protein Interactions 2007
蛋白质相互作用建模 2007
  • 批准号:
    7407311
  • 财政年份:
    2007
  • 资助金额:
    $ 10万
  • 项目类别:
Facility Core A: Bioinformatics Core
设施核心 A:生物信息学核心
  • 批准号:
    6901364
  • 财政年份:
    2005
  • 资助金额:
    $ 10万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了