Analysis and prediction of molecular interactions

分子相互作用的分析和预测

基本信息

  • 批准号:
    9920157
  • 负责人:
  • 金额:
    $ 57.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-04-06 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): The research in our lab focuses on molecular recognition using computational methods and follow-up validation experiments. Our primary target areas are (1) protein-protein docking and (2) exploring binding properties of proteins by computational solvent mapping. Protein docking methods are needed because many important interactions occur in weak, transient complexes that are not amenable to direct experimental analysis. We have developed ClusPro, the best docking server currently available. While the server is heavily used, with over 350 research papers reporting models constructed by ClusPro, the methodology has several limitations. First, global docking of relatively rigid proteins usually generates structures within 10Å interface RMSD from the native complex, but selecting and refining the best models frequently fail. Second, the methods are less accurate when docking peptides, proteins with flexible loops or unstructured regions, or homology models. Third, no reliable method is available for determining whether a docked structure represents a stable complex, and for calculating its binding free energy with any reasonable accuracy. Fourth, even these imperfect methods are too slow for proteome-wide analyses. We expect to address and solve all these problems. In addition, a new approach, based on pre-calculated pairwise interactions, will be developed for modeling complex systems, including aggregation and crowding effects. The second application considered in the proposal, computational solvent mapping, globally samples the surface of target proteins using fragment sized molecular probes. The general goals of mapping are determining binding hot spots, i.e., regions of proteins that are major contributors to the binding free energy, and identifying fragments with preferential binding to these hot spots. The main advantage of studying hot spots is that they are more conserved than binding sites are. We will improve the efficiency of flexible mapping by performing side chain search directly within the global mapping algorithm, and extend the algorithm to models with flexible loops and to homology models. The method will also be used for large scale mapping calculations. We will develop an effective combination of computational and experimental methods for the identification of fragments binding to a given hot spot, and working with collaborators attempt to find fragment hits for a number of important drug target proteins. The ultimate goals of this research are developing algorithms for virtual fragment screening in order to reduce the number of fragments that need to be experimentally tested, and expanding the method to provide direct input for fragment based ligand discovery (FBLD), thereby reducing the high costs of the approach and making it more accessible to academic laboratories and small companies.


项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SANDOR VAJDA其他文献

SANDOR VAJDA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SANDOR VAJDA', 18)}}的其他基金

Analysis and Prediction of Molecular Interactions
分子相互作用的分析和预测
  • 批准号:
    10175504
  • 财政年份:
    2016
  • 资助金额:
    $ 57.07万
  • 项目类别:
Analysis and Prediction of Molecular Interactions
分子相互作用的分析和预测
  • 批准号:
    10410497
  • 财政年份:
    2016
  • 资助金额:
    $ 57.07万
  • 项目类别:
Analysis and prediction of molecular interactions
分子相互作用的分析和预测
  • 批准号:
    9070917
  • 财政年份:
    2016
  • 资助金额:
    $ 57.07万
  • 项目类别:
Analysis and Prediction of Molecular Interactions
分子相互作用的分析和预测
  • 批准号:
    10596186
  • 财政年份:
    2016
  • 资助金额:
    $ 57.07万
  • 项目类别:
Analysis and prediction of molecular interactions
分子相互作用的分析和预测
  • 批准号:
    9256506
  • 财政年份:
    2016
  • 资助金额:
    $ 57.07万
  • 项目类别:
High-throughput portable software for fragment-based drug design
用于基于片段的药物设计的高通量便携式软件
  • 批准号:
    8124328
  • 财政年份:
    2011
  • 资助金额:
    $ 57.07万
  • 项目类别:
Computational Mapping of Proteins for Binding of Ligands
配体结合的蛋白质计算图谱
  • 批准号:
    7818904
  • 财政年份:
    2009
  • 资助金额:
    $ 57.07万
  • 项目类别:
Modeling of Protein Interactions 2007
蛋白质相互作用建模 2007
  • 批准号:
    7407311
  • 财政年份:
    2007
  • 资助金额:
    $ 57.07万
  • 项目类别:
Facility Core A: Bioinformatics Core
设施核心 A:生物信息学核心
  • 批准号:
    6901364
  • 财政年份:
    2005
  • 资助金额:
    $ 57.07万
  • 项目类别:
Conference Modeling of Protein Interactions in Genomes
基因组中蛋白质相互作用的会议建模
  • 批准号:
    7000500
  • 财政年份:
    2005
  • 资助金额:
    $ 57.07万
  • 项目类别:

相似海外基金

Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
  • 批准号:
    LP170100311
  • 财政年份:
    2018
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
  • 批准号:
    1736326
  • 财政年份:
    2017
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
  • 批准号:
    375876714
  • 财政年份:
    2017
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
  • 批准号:
    8689532
  • 财政年份:
    2014
  • 资助金额:
    $ 57.07万
  • 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
  • 批准号:
    1329780
  • 财政年份:
    2013
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
  • 批准号:
    1329745
  • 财政年份:
    2013
  • 资助金额:
    $ 57.07万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了