Computational Mapping of Proteins for Binding of Ligands

配体结合的蛋白质计算图谱

基本信息

  • 批准号:
    7818904
  • 负责人:
  • 金额:
    $ 48.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-30 至 2011-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This proposal is the competitive revision (Notice NOT-OD-09-58, NIH Announces the Availability of Recovery Act Funds for Competitive Revision Applications) of the grant "Computational Mapping of Proteins for the Binding of Ligands". Mapping methods place molecular probes - small molecules or functional groups - on the surface of proteins in order to identify the most favorable binding positions. Since regions of the protein surface that are major contributors to the binding free energy in drug-protein interactions also bind a variety of small organic molecules, mapping can identify such "hot spots" and the number of probe molecules bound is a good predictor of druggability. The parent proposal focused on "traditional" drug targets that naturally bind small molecular ligands. The general goal of this revision is to extend the analysis to the identification and characterization of druggable sites in protein-protein interfaces. Such analysis facilitates the discovery of small molecules that can inhibit or modulate the association of two proteins, an important emerging problem in pharmaceutical research. Application of mapping to a number of protein-protein interaction (PPI) targets has shown that the method always identifies at least some fraction of the site which can bind small molecular inhibitors within the protein-protein interface region, even when starting from the structure of a ligand-free protein. In Aim 1 we will further study the generality of this observation by mapping a variety of PPI targets on which structural and biochemical information is available. We will also study the interactions between fragments and their protein environments in the binding site by using target-specific probe libraries based on the known ligands of each target. Since binding of small molecules frequently requires conformational changes to form appropriate pockets in a relatively flat protein-protein interface, in Aim 2 we develop a method to account for side chain flexibility prior to mapping. The algorithm combines statistical analysis and energy minimization to identify "moveable" side chains and their potential conformational states in the vicinity of the "hot spot" identified by the initial mapping. Protein structures are generated by combining the potential conformations of moveable side chains. The re-mapping of such adjusted structures generally agrees well with results obtained for the ligand-bound proteins, and hence substantially improves the predictive power of the method. Aim 3 is the theoretical and experimental characterization of hot spots that enable the binding of small molecular inhibitors in the binding interface of IL-2 with IL-2R1, an exemplary PPI target. The binding energies that different portions of the known inhibitors derive from their interactions with the protein have not been systematically elucidated. We will measure experimental binding energies and binding orientations for different molecular fragments derived from these known IL-2 inhibitors, using quantitative biochemical and biophysical assays as well as X-ray crystallography, and will compare the results with those obtained computationally using these same fragments as probes. The results will provide new information on the physicochemical and structural features that render a difficult PPI site druggable, which we will use to further refine our computational method. PUBLIC HEALTH RELEVANCE: Mapping methods place molecular probes - small molecules or functional groups - on the surface of proteins in order to identify the most favorable binding positions, and provide information on the druggability of such site. We focus on the identification and characterization of druggable sites capable of binding small molecular inhibitors of protein-protein interactions, an important emerging problem in pharmaceutical research.
描述(由申请人提供):本提案是“配体结合蛋白质计算图谱”拨款的竞争性修订(通知no - od -09-58, NIH宣布为竞争性修订申请提供恢复法案资金)。定位方法将分子探针(小分子或官能团)放置在蛋白质表面,以确定最有利的结合位置。由于蛋白质表面的区域是药物-蛋白质相互作用中结合自由能的主要贡献者,也结合了各种小有机分子,因此作图可以识别这样的“热点”,结合的探针分子的数量是一个很好的药物性预测指标。母体提案的重点是自然结合小分子配体的“传统”药物靶标。本修订的总体目标是将分析扩展到蛋白质-蛋白质界面中可药物位点的鉴定和表征。这种分析有助于发现可以抑制或调节两种蛋白质结合的小分子,这是药物研究中一个重要的新问题。对许多蛋白-蛋白相互作用(PPI)靶标的定位应用表明,即使从无配体蛋白的结构开始,该方法也总能识别出至少一部分可以结合蛋白-蛋白界面区域内小分子抑制剂的位点。在Aim 1中,我们将通过绘制各种可获得结构和生化信息的PPI靶点来进一步研究这一观察结果的普遍性。我们还将利用基于每个靶标的已知配体的靶标特异性探针文库,研究片段与其结合位点的蛋白质环境之间的相互作用。由于小分子的结合经常需要构象变化才能在相对平坦的蛋白质-蛋白质界面中形成适当的口袋,因此在Aim 2中,我们开发了一种方法,在绘制之前考虑侧链的灵活性。该算法将统计分析和能量最小化相结合,在初始映射确定的“热点”附近识别“可移动”侧链及其潜在构象状态。蛋白质结构是通过结合可移动侧链的潜在构象而产生的。这种调整后的结构的重新映射通常与配体结合蛋白的结果一致,因此大大提高了该方法的预测能力。目的3是理论和实验表征热点,使IL-2与IL-2R1结合界面中的小分子抑制剂能够结合,IL-2R1是典型的PPI靶点。已知抑制剂的不同部分从它们与蛋白质的相互作用中获得的结合能还没有被系统地阐明。我们将使用定量生化和生物物理分析以及x射线晶体学来测量来自这些已知IL-2抑制剂的不同分子片段的实验结合能和结合方向,并将结果与使用这些相同片段作为探针获得的计算结果进行比较。这些结果将提供新的物理化学信息和结构特征,使一个困难的PPI位点具有可药物性,我们将使用这些信息进一步完善我们的计算方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SANDOR VAJDA其他文献

SANDOR VAJDA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SANDOR VAJDA', 18)}}的其他基金

Analysis and Prediction of Molecular Interactions
分子相互作用的分析和预测
  • 批准号:
    10175504
  • 财政年份:
    2016
  • 资助金额:
    $ 48.75万
  • 项目类别:
Analysis and Prediction of Molecular Interactions
分子相互作用的分析和预测
  • 批准号:
    10410497
  • 财政年份:
    2016
  • 资助金额:
    $ 48.75万
  • 项目类别:
Analysis and prediction of molecular interactions
分子相互作用的分析和预测
  • 批准号:
    9920157
  • 财政年份:
    2016
  • 资助金额:
    $ 48.75万
  • 项目类别:
Analysis and prediction of molecular interactions
分子相互作用的分析和预测
  • 批准号:
    9070917
  • 财政年份:
    2016
  • 资助金额:
    $ 48.75万
  • 项目类别:
Analysis and Prediction of Molecular Interactions
分子相互作用的分析和预测
  • 批准号:
    10596186
  • 财政年份:
    2016
  • 资助金额:
    $ 48.75万
  • 项目类别:
Analysis and prediction of molecular interactions
分子相互作用的分析和预测
  • 批准号:
    9256506
  • 财政年份:
    2016
  • 资助金额:
    $ 48.75万
  • 项目类别:
High-throughput portable software for fragment-based drug design
用于基于片段的药物设计的高通量便携式软件
  • 批准号:
    8124328
  • 财政年份:
    2011
  • 资助金额:
    $ 48.75万
  • 项目类别:
Modeling of Protein Interactions 2007
蛋白质相互作用建模 2007
  • 批准号:
    7407311
  • 财政年份:
    2007
  • 资助金额:
    $ 48.75万
  • 项目类别:
Facility Core A: Bioinformatics Core
设施核心 A:生物信息学核心
  • 批准号:
    6901364
  • 财政年份:
    2005
  • 资助金额:
    $ 48.75万
  • 项目类别:
Conference Modeling of Protein Interactions in Genomes
基因组中蛋白质相互作用的会议建模
  • 批准号:
    7000500
  • 财政年份:
    2005
  • 资助金额:
    $ 48.75万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.75万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 48.75万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 48.75万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 48.75万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 48.75万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 48.75万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 48.75万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 48.75万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 48.75万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 48.75万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了