Schrödinger operators with complex potentials
具有复杂势的薛定谔算子
基本信息
- 批准号:2465259
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Schrödinger equation describes the motion of quantum mechanical particles. The spatial part of the equation is governed by a so-called Schrödinger operator, a partial differential operator that can be viewed as a quantization of the classical Hamiltonian. The eigenvalues (or more generally, the spectrum) of this operator are the possible energies of the system. Conservation of energy requires that the Schrödinger operator is self-adjoint ("symmetric/hermitian"); in particular, the potential must be real-valued in this case. However, many interesting physical phenomena (resonances, dissipation of energy etc.) are modelled by Schrödinger operators with complex-valued potentials. Mathematically, complex potentials pose a significant challenge, and the theory is much less developed than its classical counterpart dealing only with real-valued potentials. Even though rapid progress has been made in recent years, there is a need for more (counter)-examples.The aim of this project is to construct explicit (counter)-examples of complex potentials leading to spectral behaviour that is "unexpected" from the point of view of the classical theory. The candidate will have the opportunity to participate in workshops of our LMS Joint Research Group "Challenges in Non-Self-Adjoint Spectral Theory".
薛定谔方程描述了量子力学粒子的运动。方程的空间部分由所谓的薛定谔算子控制,薛定谔算子是一种偏微分算子,可以被视为经典哈密顿量的量子化。这个算符的本征值(或更一般地说,谱)是系统的可能能量。能量守恒要求薛定谔算符是自伴的(“对称/埃尔米特”);特别是,在这种情况下,势必须是实值的。然而,许多有趣的物理现象(共振,能量耗散等)由具有复值势的薛定谔算子建模。在数学上,复势构成了一个重大的挑战,该理论比只处理实值势的经典理论要落后得多。尽管近年来已经取得了快速的进展,有必要更多的(反)-examples.本项目的目的是构建明确的(反)-examples复杂的潜力导致光谱行为,这是“意想不到的”从经典理论的观点来看。候选人将有机会参加我们的LMS联合研究小组“非自伴谱理论的挑战”的研讨会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
两类拟线性Schrödinger方程正规化解的存在性与多重性研究
- 批准号:QN25A010018
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
一类四阶非线性Schrödinger方程的规化解
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
分数阶非线性Schrödinger方程快速算法研究
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
- 批准号:12301508
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
两类Schrödinger-Poisson系统解的研究
- 批准号:12301144
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
非局部空间 Schrödinger 型方程的高效及高精度守恒算法
- 批准号:2023JJ40656
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
矩阵非线性Schrödinger类系统的简并非线性波及其相互作用机制研究
- 批准号:12305001
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Chern-Simons-Schrödinger方程中的几类变分问题
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
一类不满足Berestycki-Lions条件Schrödinger方程解的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
带位势的Sobolev临界或超临界Schrödinger方程(组)正规化解及其性态研究
- 批准号:
- 批准年份:2022
- 资助金额:29 万元
- 项目类别:地区科学基金项目
相似海外基金
(Semi)algebraic Geometry in Schrödinger Operators and Nonlinear Hamiltonian Partial Differential Equations
薛定谔算子和非线性哈密顿偏微分方程中的(半)代数几何
- 批准号:
2246031 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Schrödinger Operators on Lattices
职业:格子上的薛定谔算子
- 批准号:
2143369 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Random Matrices, Random Schrödinger Operators, and Applications
随机矩阵、随机薛定谔算子和应用
- 批准号:
2153335 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
MPS-Ascend: Ergodic Schrödinger Operators and Quasicrystals
MPS-Ascend:遍历薛定谔算子和准晶体
- 批准号:
2213277 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Fellowship Award
Spectral theory and resonances for Schrödinger operators
薛定谔算子的谱理论和共振
- 批准号:
RGPIN-2016-03748 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Spectral theory and resonances for Schrödinger operators
薛定谔算子的谱理论和共振
- 批准号:
RGPIN-2016-03748 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Spectral theory and resonances for Schrödinger operators
薛定谔算子的谱理论和共振
- 批准号:
RGPIN-2016-03748 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Random Schrödinger operators arising in the studyof reinforced random processes
强化随机过程研究中出现的随机薛定谔算子
- 批准号:
417891127 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Random Schrödinger operators with breather potentials as a paradigmatic model for non-linear influence of randomness
具有呼吸势的随机薛定谔算子作为随机性非线性影响的范例模型
- 批准号:
394221243 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Spectral theory and resonances for Schrödinger operators
薛定谔算子的谱理论和共振
- 批准号:
RGPIN-2016-03748 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual