C-star algebras and non-equilibrium statistical mechanics
C星代数和非平衡统计力学
基本信息
- 批准号:2554049
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This PhD research aims at developing C-star algebra and functional-analytic methods for the study of quantum and classical statistical mechanics out of equilibrium and hydrodynamics. The goal is to obtain mathematically rigorous results in the emergent fields of the non-equilibrium statistical mechanics of closed systems, especially in view of recent activity in the context of hydrodynamics. The research will look for understanding the Boltzmann-Gibbs projection principle, non-equilibrium steady states, and the hydrodynamic equations, at the various scales of hydrodynamics (Euler, diffusive), in many-body systems of various types including quantum and classical lattices and gases of particles. Deriving hydrodynamics for Hamiltonian, reversible systems is one of the most important open problems of mathematical physics, and this PhD research aims at making progress in this direction.
这个博士研究的目的是发展C-星代数和功能分析方法的量子和经典统计力学的平衡和流体力学的研究。目标是在封闭系统的非平衡统计力学的新兴领域中获得数学上严格的结果,特别是考虑到流体力学方面的最新活动。该研究将寻求理解Boltzmann-Gibbs投影原理,非平衡稳态和流体动力学方程,在流体动力学的各种尺度(欧拉,扩散),在各种类型的多体系统,包括量子和经典晶格和粒子气体。推导汉密尔顿可逆系统的流体力学是数学物理学最重要的开放问题之一,这项博士研究旨在在这一方向取得进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
数学物理中精确可解模型的代数方法
- 批准号:11771015
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Quantum singularity and non-linear positive maps on operator algebras
算子代数上的量子奇点和非线性正映射
- 批准号:
23K03151 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structure properties of non-selfadjoint operator algebras
非自共轭算子代数的结构性质
- 批准号:
RGPIN-2019-05430 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Structure properties of non-selfadjoint operator algebras
非自共轭算子代数的结构性质
- 批准号:
RGPIN-2019-05430 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Research on Koszul AS-regular algebras from the categorical view of Non-commutative algebraic geometry and Representation theory
从非交换代数几何和表示论范畴角度研究Koszul AS-正则代数
- 批准号:
21K13781 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Structure properties of non-selfadjoint operator algebras
非自共轭算子代数的结构性质
- 批准号:
RGPIN-2019-05430 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Structure properties of non-selfadjoint operator algebras
非自共轭算子代数的结构性质
- 批准号:
RGPIN-2019-05430 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Tilting theory of gentle algebras via surface combinatorics
基于表面组合的温和代数倾斜理论
- 批准号:
19K23401 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Diagramatic construction of non-semisimple TQFT
非半简单 TQFT 的图解构造
- 批准号:
19F19765 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Structure properties of non-selfadjoint operator algebras
非自共轭算子代数的结构性质
- 批准号:
DGECR-2019-00368 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Launch Supplement
Irreducible weight and non-weight representations of some Lie algebras
一些李代数的不可约权重和非权重表示
- 批准号:
RGPIN-2015-05813 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual