Post-quantum cryptography with isogeny graphs of abelian varieties
具有阿贝尔簇同源图的后量子密码学
基本信息
- 批准号:2571327
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Quantum computers threaten to break most of the cryptography we currently use to protect our information security systems over an insecure channel such as the internet. In a quantum computer, performing operations comes from a quantum physical notion that works differently from a classical computer setting, and it gives an exponential speed-up for certain computations. The question of when a large-scale quantum computer will be built is not known and it is hard to estimate the exact time. Although it was not clear that large quantum computers are physically possible in the past, many scientists nowadays believe that it is just a significant engineering challenge. Currently, many researchers have been working to create quantum-resistant cryptographic systems by the time they are needed due to the sudden realization of the possible near arrival of a general quantum computer within the cryptographic community. If large quantum computers become practical one day, all widely used methods of asymmetric cryptography in use will be essentially broken. While the most optimistic believers of quantum computers suggest that such computers are years away to be constructed, maybe decades, it also takes years, maybe decades, to develop, test, and de- ploy new quantum-resistant schemes. To construct such quantum-resistant cryptographic systems, we need a new class of hard mathematical problems which seem to be unbreakable even by a quantum computer. Isogeny-based cryptography is a specific type of post-quantum cryptography that uses certain special maps between abelian varieties, mostly between elliptic curves, over finite fields. The reasons why isogeny-based cryptography grabbed the attention of the cryptographic community are the use of relatively short keys and the most sophisticated and rich mathematical structure among the other proposals for post-quantum candidates. Thus, it paves the way for many interesting questions to cryptographers and number theorists. As one of my research interests, I would like to construct new crypto- graphic protocols by using abelian varieties and their properties. Abelian varieties are the objects combining the fields of geometry and arithmetic. Due to their real-world applications in cryptography, abelian varieties have led to researchers to work on the computational and the arithmetic proper- ties of them. The basic examples of abelian varieties are elliptic curves and Jacobian varieties of hyperelliptic curves, and morphisms between abelian varieties concerning both the geometric and the arithmetic structures are called isogenies
量子计算机有可能打破我们目前用于通过互联网等不安全渠道保护信息安全系统的大多数加密技术。在量子计算机中,执行操作来自量子物理概念,与经典计算机设置不同,它为某些计算提供了指数级的加速。大规模量子计算机何时建成的问题尚不清楚,很难估计确切的时间。尽管过去还不清楚大型量子计算机在物理上是否可行,但现在许多科学家认为这只是一个重大的工程挑战。目前,许多研究人员一直致力于在需要的时候创建抗量子加密系统,因为突然意识到通用量子计算机可能即将到来。如果有一天大型量子计算机成为现实,那么所有广泛使用的非对称加密方法都将被彻底打破。虽然量子计算机最乐观的信徒认为,这样的计算机需要数年,也许几十年才能建成,但开发、测试和部署新的抗量子方案也需要数年,也许几十年。为了构建这种抗量子密码系统,我们需要一类新的数学难题,即使是量子计算机也似乎无法破解。基于等基因的密码学是一种特殊类型的后量子密码学,它使用有限域上阿贝尔变体(主要是椭圆曲线)之间的某些特殊映射。基于等基因的密码学之所以引起密码学界的注意,是因为在其他的后量子候选方案中,使用了相对较短的密钥和最复杂、最丰富的数学结构。因此,它为密码学家和数论学家提出了许多有趣的问题。作为我的研究兴趣之一,我想利用阿贝尔变体及其性质来构建新的加密协议。阿贝尔变分是几何和算术领域相结合的对象。由于它们在密码学中的实际应用,阿贝尔变体导致研究人员对它们的计算和算术性质进行了研究。阿贝尔变体的基本例子是椭圆曲线和超椭圆曲线的雅可比变体,涉及几何结构和算术结构的阿贝尔变体之间的态射称为等基因
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
高温气化过程中煤灰矿物质演变规律的量子化学计算与实验研究
- 批准号:50906055
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
广义Besov函数类上的几个逼近特征
- 批准号:10926056
- 批准年份:2009
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
基于量子点多色荧光细胞标志谱型的CTC鉴别与肿瘤个体化诊治的研究
- 批准号:30772507
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
驻波场驱动的量子相干效应的研究
- 批准号:10774058
- 批准年份:2007
- 资助金额:35.0 万元
- 项目类别:面上项目
量子计算电路的设计和综合
- 批准号:60676020
- 批准年份:2006
- 资助金额:31.0 万元
- 项目类别:面上项目
半导体物理中的非线性偏微分方程组
- 批准号:10541001
- 批准年份:2005
- 资助金额:4.0 万元
- 项目类别:专项基金项目
量子点技术对细胞表面蛋白和受体在体内分布的研究
- 批准号:30570686
- 批准年份:2005
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
APPQC: Advanced Practical Post-Quantum Cryptography From Lattices
APPQC:来自格的高级实用后量子密码学
- 批准号:
EP/Y02432X/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Lightweight Post Quantum Cryptography for IoT Devices
适用于物联网设备的轻量级后量子密码学
- 批准号:
2906351 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Studentship
Analysis of problems for post-quantum cryptography
后量子密码学问题分析
- 批准号:
23K11098 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
The limits of Quantum Computing: an approach via Post-Quantum Cryptography
量子计算的局限性:后量子密码学的方法
- 批准号:
EP/W02778X/2 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fellowship
PKC-Sec: Security Analysis of Classical and Post-Quantum Public Key Cryptography Assumptions
PKC-Sec:经典和后量子公钥密码学假设的安全性分析
- 批准号:
EP/W021633/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
High assurance post-quantum cryptography
高保证后量子密码学
- 批准号:
RGPIN-2022-03187 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
RINGS: Bringing Post-Quantum Cryptography to Large-Scale NextG Systems
RINGS:将后量子密码学引入大规模 NextG 系统
- 批准号:
2147196 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
SaTC: CORE: Medium: Cryptography in a Post-Quantum Future
SaTC:核心:媒介:后量子未来的密码学
- 批准号:
2154705 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
The limits of Quantum Computing: an approach via Post-Quantum Cryptography
量子计算的局限性:后量子密码学的方法
- 批准号:
EP/W02778X/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Fellowship
Lightweight post quantum cryptography for IoT devices
适用于物联网设备的轻量级后量子加密
- 批准号:
2774632 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship