Moduli spaces of multi-polarised projective varieties

多极化射影簇的模空间

基本信息

  • 批准号:
    2580832
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Moduli spaces arise naturally in classification problems in algebraic and differential geometry, and play important roles in many different areas. A moduli problem, for example the classification of nonsingular complex projective curves up to isomorphism, or equivalently compact Riemann surfaces up to biholomorphism, can usually be resolved into some basic steps. The first step is to find as many discrete invariants of the objects to be classified as possible (in the case of nonsingular complex projective curves the genus is the only discrete invariant). The second step is to fix the discrete invariants and try to construct a moduli space; that is, an algebraic variety whose points correspond in a natural way to the equivalence classes of the objects to be classified. This works nicely for nonsingular curves, though to include singular curves much more care is needed. Complex projective curves with very mild singularities (so-called stable curves) can be included without difficulty; the moduli spaces of stable curves of different genera are themselves projective varieties whose enumerative geometry has been intensively studied over the last decades. The classification of complex projective curves is part of one of the most fundamental classification problems in algebraic geometry: that of classifying complex projective varieties (of fixed dimension). It is usual to work with polarised projective varieties (X,L) where L is an ample line bundle over the projective variety X, and to try to impose suitable stability conditions so that moduli spaces of (semi)stable polarised complex projective varieties can be constructed. (In the case when X is a nonsingular complex projective curve of genus at least two then we can choose a suitable power of the canonical line bundle as the polarisation). Very significant advances in this direction have been made in recent years, by combining methods from algebraic, differential and symplectic geometry, relating the so-called K-stability of (X,L) to the existence of special Kahler metrics on X. The aim of this research project is to study moduli spaces of complex projective varieties X equipped not just with one ample line bundle L, but instead with finitely many ample line bundles representing a (subset of a) basis of the Neron-Severi group of X. Given one ample line bundle L on X, we can use the sections of a sufficiently large power of L to embed X in a projective space. Then one can hope to apply ideas coming from Mumford's geometric invariant theory (GIT), developed in the 1960s to construct and study quotients of algebraic varieties by reductive group actions, to define notions of (semi)stability for the action of the associated special linear group on the Hilbert scheme representing projective subschemes of this projective space with the same Hilbert polynomial as X. However these depend on the power of L chosen, and do not have obvious geometric interpretation; the motivation behind the definition of K-(semi)stability is to provide some sort of asymptotic version of this GIT (semi)stability as the power of the line bundle tends to infinity. Given several different ample line bundles on X we can take sections of tensor products of powers of these line bundles to embed X in projective toric varieties. We can then study the corresponding group actions on the corresponding toric varieties, and analogues of K-stability in these situations. The project aims to investigate this in the case when dimX=2, which is the lowest dimension which is not already covered by the traditional situation with just one ample line bundle.This project falls within the EPSRC Geometry and Topology research area. No companies or collaborators are involved.
模空间在代数和微分几何的分类问题中自然出现,并在许多不同的领域中发挥着重要作用。一个模的问题,例如分类的非奇异复杂的射影曲线同构,或等价的紧黎曼曲面的双全纯,通常可以解决成一些基本步骤。第一步是找到尽可能多的离散不变量的对象进行分类(在非奇异复杂的投影曲线的情况下,属是唯一的离散不变量)。第二步是确定离散不变量,并尝试构建一个模空间;也就是说,一个代数簇,其点以自然的方式对应于要分类的对象的等价类。这对非奇异曲线很有效,但要包括奇异曲线则需要更多的注意。具有非常温和奇点的复射影曲线(所谓的稳定曲线)可以毫无困难地包括在内;不同属的稳定曲线的模空间本身就是射影簇,其计数几何在过去几十年中得到了深入研究。复射影曲线的分类是代数几何中最基本的分类问题之一的一部分:分类复射影簇(固定维数)。通常使用极化投射簇(X,L),其中L是投射簇X上的一个充足线丛,并试图施加适当的稳定性条件,以便可以构造(半)稳定的极化复投射簇的模空间。(In当X是亏格至少为2的非奇异复射影曲线时,则我们可以选择典范线丛的适当幂作为极化)。近年来,通过结合代数、微分和辛几何的方法,在这个方向上取得了非常重要的进展,将所谓的(X,L)的K-稳定性与X上特殊Kahler度量的存在性联系起来。这个研究项目的目的是研究复射影簇X的模空间,它不仅有一个充线丛L,而且有许多充线丛代表X的Neron-Severi群的一个基(的子集)。给定X上的一个充分的线丛L,我们可以使用L的一个足够大的幂的截面将X嵌入一个射影空间。然后人们可以希望应用来自芒福德的几何不变理论(GIT)的思想,该理论在20世纪60年代发展起来,用于通过还原群作用来构造和研究代数簇的等价物,以定义相关特殊线性群在希尔伯特方案上的作用的(半)稳定性的概念,该希尔伯特方案表示该投射空间的投射子方案,具有与X相同的希尔伯特多项式。然而,这些依赖于选择的L的幂,并且没有明显的几何解释; K-(半)稳定性定义背后的动机是提供这种GIT(半)稳定性的某种渐近版本,因为线丛的幂趋于无穷大。给定X上的几个不同的充线丛,我们可以取这些线丛的幂的张量积的截面,将X嵌入到投射环面簇中。然后,我们可以研究相应的复曲面簇上的相应的群作用,以及在这些情况下K-稳定性的类似物。该项目旨在研究dimX=2时的情况,这是传统情况下仅用一个充足的线束尚未覆盖的最低维度。该项目属于EPSRC几何和拓扑研究领域的福尔斯。没有公司或合作者参与。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

Bergman空间上的Toeplitz算子及Hankel算子的性质
  • 批准号:
    11126061
  • 批准年份:
    2011
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
分形上的分析及其应用
  • 批准号:
    10471150
  • 批准年份:
    2004
  • 资助金额:
    15.0 万元
  • 项目类别:
    面上项目

相似海外基金

Biomimetic Macrophage Membrane-Coated Nanosponges: A Novel Therapeutic for Multidrug-Resistant Pseudomonas aeruginosa and Acinetobacter baumannii Hospital-Associated Pneumonia
仿生巨噬细胞膜包被的纳米海绵:一种治疗多重耐药铜绿假单胞菌和鲍曼不动杆菌医院相关肺炎的新疗法
  • 批准号:
    10674406
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Makeactive UK: an exploration of Virtual Reality Maker Spaces for multi-user, collaborative design at a distance
Makeactive UK:对用于多用户远程协作设计的虚拟现实创客空间的探索
  • 批准号:
    10021756
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Feasibility Studies
Multi-variable Hardy Spaces and Operator Theory
多变量Hardy空间和算子理论
  • 批准号:
    RGPIN-2020-05683
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Platelet mass microarchitecture as a regulator of thrombin production
血小板质量微结构作为凝血酶产生的调节剂
  • 批准号:
    10460994
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Multi-variable Hardy Spaces and Operator Theory
多变量Hardy空间和算子理论
  • 批准号:
    RGPIN-2020-05683
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Platelet mass microarchitecture as a regulator of thrombin production
血小板质量微结构作为凝血酶产生的调节剂
  • 批准号:
    10218337
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Multi-variable Hardy Spaces and Operator Theory
多变量Hardy空间和算子理论
  • 批准号:
    RGPIN-2020-05683
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Comparative case study investigating illegal gatekeeping practices within Children and Adult's Social care multi-agency spaces.
比较案例研究调查儿童和成人社会护理多机构空间内的非法把关做法。
  • 批准号:
    2120377
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Studentship
Biophysical Control of Cell Form and Function by Single Actomyosin Stress Fibers
单个肌动球蛋白应力纤维对细胞形态和功能的生物物理控制
  • 批准号:
    10669215
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
Biophysical Control of Cell Form and Function by Single Actomyosin Stress Fibers
单个肌动球蛋白应力纤维对细胞形态和功能的生物物理控制
  • 批准号:
    10445792
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了