Biophysical Control of Cell Form and Function by Single Actomyosin Stress Fibers
单个肌动球蛋白应力纤维对细胞形态和功能的生物物理控制
基本信息
- 批准号:10445792
- 负责人:
- 金额:$ 33.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-20 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalActinsActomyosinAddressAdoptedArchitectureAwardBackBiologicalBiophysicsCell NucleusCell ShapeCellsCellular StructuresClinicalCollaborationsComplexComputer ModelsConfined SpacesCuesDependenceDiseaseDorsalEngineeringEnvironmentExtracellular MatrixFiberFoundationsGeneticGenetic TranscriptionGeometryGlioblastomaGliomaImageIndividualKnowledgeLasersMaintenanceMalignant neoplasm of brainMeasuresMechanicsMediatingMesenchymalMethodologyMicrofluidic MicrochipsMicrofluidicsMolecularMorphogenesisMyosin ATPaseNeurosurgeonNuclearPathway interactionsPatternPhosphatidylinositol 4,5-DiphosphatePhosphorylationPhysiologyPlayProcessPublicationsRegulationResistanceRoleShapesSignal TransductionStress FibersSurfaceTechnologyTestingTissuesTranscription CoactivatorTranslatingWidthWorkbasebevacizumabcell motilitycofilindesignhuman diseasein vivoinnovationinsightmigrationmimeticsmonolayermouse modelmulti-scale modelingnanosurgerynetwork architecturenoveloptogeneticsreconstitutionrecruitstem cellstooltwo-dimensional
项目摘要
PROJECT SUMMARY/ABSTRACT
Actomyosin stress fibers (SFs) enable cells to tense the extracellular matrix (ECM), a process key to cell shape
determination, motility, and morphogenesis. Over the past 15+ years, including the past period of R01
support, we have made significant contributions to the field’s understanding of SF mechanics and contributions
to cell structure. Our work is particularly notable for the use of femtosecond laser nanosurgery (FLN), which
has enabled us to show that the three canonical SF subtypes – dorsal fibers, transverse arcs, and ventral
fibers – collectively enforce a front-back tension gradient that underlies two-dimensional (2D) mesenchymal
migration. We also showed that the SF network architecture can mechanically reinforce individual SFs, which
has significant implications for symmetry breakage during directed migration and force propagation through cell
monolayers. With this intellectual foundation in place, our renewal application turns to two important
questions: How is polarization of tension in the SF network encoded by molecular signals classically
understood to establish front-back polarity? And how does our knowledge of 2D SF networks translate to
confined migration geometries like those found in tissue? We will address these questions through two
specific aims, both of which build upon publications from this award. In Specific Aim 1, we will investigate
mechanistic contributions of cofilin-1 to establishment and maintenance of SF front-back tension polarization
during migration. We hypothesize that cofilin-1 establishes front-back polarization of SF tension by promoting
the assembly and contractile maturation of transverse arcs. By combining biophysical, engineering, and cell
biological tools, we will identify key molecular and force-based signals that modulate recruitment of cofilin-1 to
developing transverse arcs. In an innovative new collaboration with Dr. Bruce Goode (Brandeis) we will
reconstitute actin bundles in microfluidic devices and quantify the relationship between tensile force and cofilin-
1 engagement. In Specific Aim 2, we will dissect contributions of SF networks to migration in confined
geometries where the ECM imposes axial cues and sterically precludes elaboration of 2D SF networks. We
hypothesize that increasing confinement redirects SF assembly from the 2D dorsal fiber-transverse arc-ventral
fiber assembly pathway towards de novo parallelized SF assembly. We will combine microengineered culture
platforms, single-cell mechanical tools, and superresolution imaging to probe confinement-induced changes in
SF assembly, architecture, and mechanics. Aim 2 will leverage two established, productive collaborations:
With Dr. Ulrich Schwarz (U. Heidelberg), we will develop multiscale computational models that relate SF
network architecture and mechanics to cell migration in confined spaces. With neurosurgeon Dr. Manish Aghi
(UCSF), we will test the clinical value of our observations by asking if confined migration of glioblastoma stem
cells is retrospectively predictive of in vivo invasion patterns. Our studies will create unprecedented new insight
into how SFs contribute to migration, with innovative methodology and close connection to human disease.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sanjay Kumar其他文献
Sanjay Kumar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sanjay Kumar', 18)}}的其他基金
Mechanisms of adhesion and invasion in hyaluronic acid matrices
透明质酸基质的粘附和侵袭机制
- 批准号:
10380867 - 财政年份:2021
- 资助金额:
$ 33.06万 - 项目类别:
Mechanisms of adhesion and invasion in hyaluronic acid matrices
透明质酸基质的粘附和侵袭机制
- 批准号:
10185347 - 财政年份:2021
- 资助金额:
$ 33.06万 - 项目类别:
Mechanisms of adhesion and invasion in hyaluronic acid matrices
透明质酸基质的粘附和侵袭机制
- 批准号:
10605241 - 财政年份:2021
- 资助金额:
$ 33.06万 - 项目类别:
Cellular mechanobiology and engineering of active brown adipose tissue
活性棕色脂肪组织的细胞力学生物学和工程
- 批准号:
9912145 - 财政年份:2019
- 资助金额:
$ 33.06万 - 项目类别:
Cellular mechanobiology and engineering of active brown adipose tissue
活性棕色脂肪组织的细胞力学生物学和工程
- 批准号:
10415961 - 财政年份:2019
- 资助金额:
$ 33.06万 - 项目类别:
Cellular mechanobiology and engineering of active brown adipose tissue
活性棕色脂肪组织的细胞力学生物学和工程
- 批准号:
10170330 - 财政年份:2019
- 资助金额:
$ 33.06万 - 项目类别:
Cellular mechanobiology and engineering of active brown adipose tissue
活性棕色脂肪组织的细胞力学生物学和工程
- 批准号:
9747438 - 财政年份:2018
- 资助金额:
$ 33.06万 - 项目类别:
Biophysical Control of Cell Form and Function by Single Actomyosin Stress Fibers
单个肌动球蛋白应力纤维对细胞形态和功能的生物物理控制
- 批准号:
10669215 - 财政年份:2017
- 资助金额:
$ 33.06万 - 项目类别:
Biophysical Control of Cell Form and Function by Single Actomyosin Stress Fibers
单个肌动球蛋白应力纤维对细胞形态和功能的生物物理控制
- 批准号:
9399083 - 财政年份:2017
- 资助金额:
$ 33.06万 - 项目类别:
Biophysical Control of Cell Form and Function by Single Actomyosin Stress Fibers
单个肌动球蛋白应力纤维对细胞形态和功能的生物物理控制
- 批准号:
9977697 - 财政年份:2017
- 资助金额:
$ 33.06万 - 项目类别:
相似海外基金
A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
- 批准号:
22KJ2613 - 财政年份:2023
- 资助金额:
$ 33.06万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
342887 - 财政年份:2016
- 资助金额:
$ 33.06万 - 项目类别:
Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
278338 - 财政年份:2013
- 资助金额:
$ 33.06万 - 项目类别:
Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
- 批准号:
8505938 - 财政年份:2012
- 资助金额:
$ 33.06万 - 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
- 批准号:
7931495 - 财政年份:2009
- 资助金额:
$ 33.06万 - 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
- 批准号:
19390048 - 财政年份:2007
- 资助金额:
$ 33.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
- 批准号:
5311554 - 财政年份:2001
- 资助金额:
$ 33.06万 - 项目类别:
Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
- 批准号:
6316669 - 财政年份:2000
- 资助金额:
$ 33.06万 - 项目类别:














{{item.name}}会员




