Reconstruction Hardware for Real-Time Moving Tabel MRI

用于实时移动平板 MRI 的重建硬件

基本信息

  • 批准号:
    6890990
  • 负责人:
  • 金额:
    $ 33.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-05-01 至 2007-04-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The overall goal of this project is to design and integrate instrumentation allowing the next generation of real-time image formation in MRI. The motivation comes from an existing project for forming MR images during continuous motion of the patient table. When applied to peripheral MR angiography the target is the formation of a moving table angiogram in which the table motion is precisely matched to the transit of the contrast bolus through the patient. However, implementation of this requires that a number of mathematical processes be done at high speed, including: (i) time-resolved 3D MRI of an extended field of view (FOV); (ii) determination of localized time-dependent parameters such as bolus arrival time and bolus velocity; (iii) variable ordering of phase encodings over the course of an MRI scan, allowing optimized local resolution; (iv) gradient warping correction for MR acquisition done using a moving patient table; (v) multi-coil reconstruction using the SENSE technique, allowing improved lateral resolution for a given acquisition time; (vi) MR acquisition done using a variable table velocity When implemented, these methods will allow the formation of peripheral MR angiograms with optimized, patient-specific table motion, maximum efficiency, and high spatial resolution. Specific aims are: 1. Construction of the Next Generation Real-Time Image MR Reconstruction System. The funding will allow the construction of a system enabling the real-time performance of the mathematical algorithms which perform the above processes. System design will allow the data acquisition and reconstruction to be modified in real time. 2. Incorporation of the New System into the Project of Moving Table MRA. Once the hardware is integrated into a useable system it will be interfaced to a clinical MRI scanner at Mayo and used in the formation of peripheral contrast-enhanced MR angiograms using continuous motion of the patient table through the scanner gantry.
描述(由申请人提供): 该项目的总体目标是设计和集成仪器,以实现下一代MRI实时成像。动机来自于在患者扫描床的连续运动期间形成MR图像的现有项目。当应用于外周MR血管造影术时,目标是形成移动床血管造影片,其中床运动与造影剂团通过患者的传输精确匹配。然而,这一点的实现需要以高速完成多个数学过程,包括:(i)扩展视场(FOV)的时间分辨3D MRI;(ii)确定局部时间相关参数,例如团到达时间和团速度;(iii)在MRI扫描过程中相位编码的可变排序,允许优化局部分辨率;(v)使用SENSE技术的多线圈重建,允许针对给定采集时间的改进的横向分辨率;(vi)使用可变工作台速度进行MR采集当实施时,这些方法将允许形成具有优化的,患者专用扫描床运动、最高效率和高空间分辨率。具体目标是:1。下一代实时图像MR重建系统的构建。这笔资金将允许建造一个系统,使执行上述过程的数学算法能够实时执行。系统设计将允许真实的实时修改数据采集和重建。2.将新系统纳入移动床MRA项目。一旦将硬件集成到可用系统中,它将与马约的临床MRI扫描仪连接,并用于通过扫描仪机架连续移动患者扫描床形成外周对比度增强MR血管造影片。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen J Riederer其他文献

Contrast enhanced MRA with CAPR (Cartesian Acquisition with Projection like Reconstruction) technique - review of initial clinical experience
  • DOI:
    10.1186/1532-429x-16-s1-o77
  • 发表时间:
    2014-01-16
  • 期刊:
  • 影响因子:
  • 作者:
    Manoharan Muthuvelu;Philip M Young;Paul T Weavers;Stephen J Riederer
  • 通讯作者:
    Stephen J Riederer

Stephen J Riederer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen J Riederer', 18)}}的其他基金

Super Resolution for Improved Multislice Prostate MRI
超分辨率改进的多层前列腺 MRI
  • 批准号:
    10661095
  • 财政年份:
    2022
  • 资助金额:
    $ 33.04万
  • 项目类别:
Super Resolution for Improved Multislice Prostate MRI
超分辨率改进的多层前列腺 MRI
  • 批准号:
    10517814
  • 财政年份:
    2022
  • 资助金额:
    $ 33.04万
  • 项目类别:
Reconstruction Hardware for Real-Time Moving Table MRI
用于实时移动台 MRI 的重建硬件
  • 批准号:
    6783945
  • 财政年份:
    2004
  • 资助金额:
    $ 33.04万
  • 项目类别:
Long Field Of View MRA Using Continuous Table Motion
使用连续工作台运动的长视场 MRA
  • 批准号:
    8075673
  • 财政年份:
    2002
  • 资助金额:
    $ 33.04万
  • 项目类别:
Long Field Of View MRA Using Continuous Table Motion
使用连续工作台运动的长视场 MRA
  • 批准号:
    6505997
  • 财政年份:
    2002
  • 资助金额:
    $ 33.04万
  • 项目类别:
Long Field Of View MRA Using Continuous Table Motion
使用连续工作台运动的长视场 MRA
  • 批准号:
    8478161
  • 财政年份:
    2002
  • 资助金额:
    $ 33.04万
  • 项目类别:
Long Field Of View MRA Using Continuous Table Motion
使用连续工作台运动的长视场 MRA
  • 批准号:
    6653234
  • 财政年份:
    2002
  • 资助金额:
    $ 33.04万
  • 项目类别:
Long Field Of View MRA Using Continuous Table Motion
使用连续工作台运动的长视场 MRA
  • 批准号:
    6795945
  • 财政年份:
    2002
  • 资助金额:
    $ 33.04万
  • 项目类别:
Long Field Of View MRA Using Continuous Table Motion
使用连续工作台运动的长视场 MRA
  • 批准号:
    6935863
  • 财政年份:
    2002
  • 资助金额:
    $ 33.04万
  • 项目类别:
Long Field Of View MRA Using Continuous Table Motion
使用连续工作台运动的长视场 MRA
  • 批准号:
    7915510
  • 财政年份:
    2002
  • 资助金额:
    $ 33.04万
  • 项目类别:

相似海外基金

I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
  • 批准号:
    2409130
  • 财政年份:
    2024
  • 资助金额:
    $ 33.04万
  • 项目类别:
    Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
  • 批准号:
    2414141
  • 财政年份:
    2024
  • 资助金额:
    $ 33.04万
  • 项目类别:
    Standard Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:Cyber​​AI:利用人工智能实现智能系统的网络安全解决方案
  • 批准号:
    2349104
  • 财政年份:
    2024
  • 资助金额:
    $ 33.04万
  • 项目类别:
    Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    $ 33.04万
  • 项目类别:
    Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343607
  • 财政年份:
    2024
  • 资助金额:
    $ 33.04万
  • 项目类别:
    Standard Grant
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
  • 批准号:
    DP240100602
  • 财政年份:
    2024
  • 资助金额:
    $ 33.04万
  • 项目类别:
    Discovery Projects
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
  • 批准号:
    23K22068
  • 财政年份:
    2024
  • 资助金额:
    $ 33.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
  • 批准号:
    10093095
  • 财政年份:
    2024
  • 资助金额:
    $ 33.04万
  • 项目类别:
    Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
  • 批准号:
    10106704
  • 财政年份:
    2024
  • 资助金额:
    $ 33.04万
  • 项目类别:
    EU-Funded
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
  • 批准号:
    MR/Y009657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.04万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了