Robust Missing Data Methods for Categorical Regression

用于分类回归的稳健缺失数据方法

基本信息

  • 批准号:
    6953713
  • 负责人:
  • 金额:
    $ 60.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-09-25 至 2007-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Improved methods for obtaining robust statistical inferences from categorical regression models in the presence of missing data and model misspecification would be an invaluable tool to the epidemiological and health care research communities. Presently epidemiological models are typically designed to identify patterns of alcohol-related symptoms, define criteria of alcohol use disorders, and evaluate policies regulating use and distribution of alcoholic beverages. Such models frequently rely on datasets that contain incomplete-data. While commercially available statistical software provides some automated missing value procedures (e.g., data imputation, Expectation-Maximization), further theoretical and empirical research is required to develop more robust statistical methods. In its Phase I feasibility study Martingale Research successfully developed robust estimation and inference algorithms that combine recent advances in stochastic estimation, asymptotic statistics, and generalized logistic regression that are suited to categorical regression modeling for epidemiological problems in the presence of missing data and model misspecification. These results were verified in simulation studies and the methods were applied to an alcohol-related research problem. Additionally, new theoretical research that unifies missing data and model misspecification was developed to support the development of new robust missing data inferential statistics. Phase II research will extend Phase I findings to develop and implement new robust missing data methods for categorical regression modeling in the areas of: i) hypothesis testing on parameter estimates, ii) standard error estimation, iii) model selection criteria, and iv) specification testing. The Phase II experimental design will utilize Monte Carlo simulation bootstrapping methods for the purposes of evaluating the missing data methods using representative alcohol-related databases. Specifically, the simulation studies will empirically characterize the appropriateness of the large sample assumptions for both consistent estimation and statistical inference. These simulation study methodologies in conjunction with the new robust missing data methods will be integrated into a prototype user-friendly standalone software package for the purposes of supporting epidemiological and health related regression modeling. In summary, Phase II research will establish the essential technical foundation for Phase III commercialization with the long-term objective of providing a suite of new missing data handling methods as an advanced statistical tool for recession modeling that improves epidemiological and health-related research.
描述(由申请人提供):在存在缺失数据和模型错误指定的情况下从分类回归模型获得稳健统计推论的改进方法将是流行病学和卫生保健研究界的宝贵工具。目前,流行病学模型通常旨在识别酒精相关症状的模式,定义酒精使用障碍的标准,并评估规范酒精饮料使用和分销的政策。此类模型经常依赖于包含不完整数据的数据集。虽然商用统计软件提供了一些自动缺失值程序(例如数据插补、期望最大化),但仍需要进一步的理论和实证研究来开发更稳健的统计方法。在其第一阶段可行性研究中,Martingale Research 成功开发了稳健的估计和推理算法,该算法结合了随机估计、渐近统计和广义逻辑回归的最新进展,适合在存在缺失数据和模型错误指定的情况下对流行病学问题进行分类回归建模。这些结果在模拟研究中得到了验证,并将这些方法应用于与酒精相关的研究问题。此外,还开发了统一缺失数据和模型错误指定的新理论研究,以支持新的稳健缺失数据推断统计的开发。 第二阶段研究将扩展第一阶段的研究结果,以开发和实施新的稳健缺失数据方法,用于以下领域的分类回归建模:i)参数估计的假设检验,ii)标准误差估计,iii)模型选择标准,以及iv)规格测试。第二阶段实验设计将利用蒙特卡罗模拟引导方法,以使用具有代表性的酒精相关数据库评估缺失数据方法。具体来说,模拟研究将凭经验描述大样本假设对于一致估计和统计推断的适当性。这些模拟研究方法与新的稳健缺失数据方法将被集成到一个用户友好的原型独立软件包中,以支持流行病学和健康相关的回归建模。总之,第二阶段的研究将为第三阶段的商业化奠定必要的技术基础,其长期目标是提供一套新的缺失数据处理方法,作为衰退建模的先进统计工具,从而改善流行病学和健康相关的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven S Henley其他文献

Steven S Henley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven S Henley', 18)}}的其他基金

Developing Robust Chronic Critical Illness Risk Models
开发稳健的慢性危重疾病风险模型
  • 批准号:
    8979823
  • 财政年份:
    2015
  • 资助金额:
    $ 60.7万
  • 项目类别:
Robust Suicide/Reinjury Risk Models to Assess Healthcare Systems
用于评估医疗保健系统的稳健自杀/再伤风险模型
  • 批准号:
    8781864
  • 财政年份:
    2014
  • 资助金额:
    $ 60.7万
  • 项目类别:
Multimodel Spaces for Robust Inference
用于稳健推理的多模型空间
  • 批准号:
    8738691
  • 财政年份:
    2013
  • 资助金额:
    $ 60.7万
  • 项目类别:
Multimodel Spaces for Robust Inference
用于稳健推理的多模型空间
  • 批准号:
    8592200
  • 财政年份:
    2013
  • 资助金额:
    $ 60.7万
  • 项目类别:
Robust Classification Methods for Categorical Regression
分类回归的稳健分类方法
  • 批准号:
    7395177
  • 财政年份:
    2003
  • 资助金额:
    $ 60.7万
  • 项目类别:
Robust Classification Methods for Categorical Regression
分类回归的稳健分类方法
  • 批准号:
    7686932
  • 财政年份:
    2003
  • 资助金额:
    $ 60.7万
  • 项目类别:
Robust Classification Methods for Categorical Regression
分类回归的稳健分类方法
  • 批准号:
    6645565
  • 财政年份:
    2003
  • 资助金额:
    $ 60.7万
  • 项目类别:
Robust Missing Data Methods for Categorical Regression
用于分类回归的稳健缺失数据方法
  • 批准号:
    7122096
  • 财政年份:
    2002
  • 资助金额:
    $ 60.7万
  • 项目类别:
Robust Missing Data Methods for Categorical Regression
用于分类回归的稳健缺失数据方法
  • 批准号:
    6834967
  • 财政年份:
    2002
  • 资助金额:
    $ 60.7万
  • 项目类别:
Robust Missing Data Methods for Categorical Regression
用于分类回归的稳健缺失数据方法
  • 批准号:
    6549395
  • 财政年份:
    2002
  • 资助金额:
    $ 60.7万
  • 项目类别:

相似海外基金

FAIRClinical: FAIR-ification of Supplementary Data to Support Clinical Research
FAIRClinical:补充数据的 FAIR 化以支持临床研究
  • 批准号:
    EP/Y036395/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60.7万
  • 项目类别:
    Research Grant
The IDeA State Consortium for a Clinical Research Resource Center: Increasing Clinical Trials in IDeA States through Communication of Opportunities, Effective Marketing, and WorkforceDevelopment
IDeA 州临床研究资源中心联盟:通过机会交流、有效营销和劳动力发展增加 IDeA 州的临床试验
  • 批准号:
    10715568
  • 财政年份:
    2023
  • 资助金额:
    $ 60.7万
  • 项目类别:
Optimizing integration of veterinary clinical research findings with human health systems to improve strategies for early detection and intervention
优化兽医临床研究结果与人类健康系统的整合,以改进早期检测和干预策略
  • 批准号:
    10764456
  • 财政年份:
    2023
  • 资助金额:
    $ 60.7万
  • 项目类别:
The Mayo Clinic NeuroNEXT Clinical Research Site
梅奥诊所 NeuroNEXT 临床研究网站
  • 批准号:
    10743328
  • 财政年份:
    2023
  • 资助金额:
    $ 60.7万
  • 项目类别:
Addressing Underperformance in Clinical Trial Enrollments: Development of a Clinical Trial Toolkit and Expansion of the Clinical Research Footprint
解决临床试验注册表现不佳的问题:开发临床试验工具包并扩大临床研究足迹
  • 批准号:
    10638813
  • 财政年份:
    2023
  • 资助金额:
    $ 60.7万
  • 项目类别:
The Minnesota TMD IMPACT Collaborative: Integrating Basic/Clinical Research Efforts and Training to Improve Clinical Care
明尼苏达州 TMD IMPACT 协作:整合基础/临床研究工作和培训以改善临床护理
  • 批准号:
    10828665
  • 财政年份:
    2023
  • 资助金额:
    $ 60.7万
  • 项目类别:
Improving Multicultural Engagement in Clinical Research through Partnership with Federally Qualified Health Centers and Community Health Worker Programs
通过与联邦合格的健康中心和社区卫生工作者计划合作,改善临床研究中的多元文化参与
  • 批准号:
    10823828
  • 财政年份:
    2023
  • 资助金额:
    $ 60.7万
  • 项目类别:
Promoting a Culture Of Innovation, Mentorship, Diversity and Opportunity in NCI Sponsored Clinical Research: NCI Research Specialist (Clinician Scientist) Award Application of Janice M. Mehnert, M.D.
在 NCI 资助的临床研究中促进创新、指导、多样性和机会文化:Janice M. Mehnert 医学博士的 NCI 研究专家(临床科学家)奖申请
  • 批准号:
    10721095
  • 财政年份:
    2023
  • 资助金额:
    $ 60.7万
  • 项目类别:
Clinical Research Center for REstoration of NEural-based Function in the Real World (RENEW)
现实世界神经功能恢复临床研究中心 (RENEW)
  • 批准号:
    10795328
  • 财政年份:
    2023
  • 资助金额:
    $ 60.7万
  • 项目类别:
Clinical Research and Academic Success in Obstetrics & Gynecology
产科临床研究和学术成就
  • 批准号:
    10828252
  • 财政年份:
    2023
  • 资助金额:
    $ 60.7万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了