Robust Classification Methods for Categorical Regression

分类回归的稳健分类方法

基本信息

  • 批准号:
    7395177
  • 负责人:
  • 金额:
    $ 85.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-06-04 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Improving statistical methods to provide better classification performance and new analytical capabilities for categorical regression would be invaluable to the medical and health care research communities. Categorical regression models (e.g., binary logistic, multinomial logistic) are used extensively to identify patterns of alcohol-related symptoms, screen for disorders, and assess policies. In addition, such models are used extensively in other areas of research such as mental illness, cancer, traumatic injuries, and AIDS-related pathologies. However, many such models are developed with inadequate support to fully analyze and exploit the intrinsically probabilistic nature of their results. This is of critical importance as health researchers, clinicians, and administrators are often faced with classification decisions using categorical regression models to identify unacceptable risks, adequate outcomes, and acceptable guidelines for screening, diagnoses, treatment, and quality of care. Commercially available statistical software does not offer sophisticated methods for robust estimation of posterior probabilities in the presence of model misspecification, missing covariates, and nonignorable missing data generating processes. Such robust missing data handling methods provide natural mechanisms for dealing with verification bias and modeling correlated, longitudinal, or survey data with complex sampling designs. Moreover, commercially available statistical software does not provide automated methods for using estimated posterior probabilities to make optimal classification decisions with respect to different optimality criteria. In particular, automated features such as optimizing multiple decision criteria (allocation rules) that trade off specificity against sensitivity, decision threshold confidence intervals, statistical tests for evaluating correct specification of posterior probabilities, statistical tests for comparing competing classifier thresholds, and methods for multi-outcome classification and inference are not readily available. Phase II research will extend Phase I findings for binary logistic regression to develop and implement automated robust classification methods for multinomial logistic regression modeling, which also applies to the larger class of nonlinear categorical regression models that output posterior probabilities. The Phase II software prototype will provide: 1) new user-selectable robust decision threshold estimators, 2) robust confidence intervals on decision threshold estimators, 3) new classifier threshold comparison tests, 4) new outcome probability specification tests, 5) efficient missing data handling methods in the presence of nonignorable nonresponse data, and 6) second-order analytic and simulation-based Bayesian methods for improved small sample and rare event outcome probability estimation. These new methodologies will be integrated into a prototype user-friendly software package, evaluated with extensive simulation studies, and then applied to real world classification problems encountered in: alcohol, mental illness (depression, bipolar, schizophrenia), cancer (prostate), trauma (emergency room), and infectious disease (AIDS) through collaborations with domain experts in those respective fields. In summary, Phase II research will establish the essential technical foundation for Phase III commercialization with the objective of providing a suite of new classification analysis methods as an advanced statistical tool that improves epidemiologic, clinical, and public health research.
描述(由申请人提供):改进统计方法以提供更好的分类性能和新的分类回归分析能力对于医疗和保健研究界来说是无价的。分类回归模型(例如二元逻辑、多项逻辑)广泛用于识别酒精相关症状的模式、筛查疾病和评估政策。此外,此类模型还广泛用于其他研究领域,例如精神疾病、癌症、创伤性损伤和艾滋病相关病理学。然而,许多此类模型的开发没有足够的支持来充分分析和利用其结果的内在概率性质。这一点至关重要,因为健康研究人员、临床医生和管理人员经常面临使用分类回归模型的分类决策,以确定不可接受的风险、足够的结果以及可接受的筛查、诊断、治疗和护理质量指南。市售统计软件不提供复杂的方法来在存在模型错误指定、协变量缺失和不可忽略的缺失数据生成过程的情况下稳健地估计后验概率。这种稳健的缺失数据处理方法提供了自然的机制,用于处理验证偏差以及对具有复杂抽样设计的相关数据、纵向数据或调查数据进行建模。此外,商业上可用的统计软件不提供使用估计的后验概率来针对不同的最优标准做出最优分类决策的自动化方法。特别是,优化多个决策标准(分配规则)等自动化功能(权衡特异性与敏感性)、决策阈值置信区间、评估后验概率正确规范的统计测试、比较竞争分类器阈值的统计测试以及多结果分类和推理方法并不容易获得。第二阶段研究将扩展二元逻辑回归的第一阶段研究结果,以开发和实施多项逻辑回归建模的自动鲁棒分类方法,该方法也适用于输出后验概率的更大类别的非线性分类回归模型。第二阶段软件原型将提供:1)新的用户可选择的稳健决策阈值估计器,2)决策阈值估计器的稳健置信区间,3)新的分类器阈值比较测试,4)新的结果概率规范测试,5)在存在不可忽略的无响应数据的情况下有效的缺失数据处理方法,以及6)用于改进小样本和罕见事件的二阶分析和基于模拟的贝叶斯方法 结果概率估计。这些新方法将被集成到一个用户友好的原型软件包中,通过广泛的模拟研究进行评估,然后通过与各个领域的领域专家合作,应用于现实世界中遇到的分类问题:酒精、精神疾病(抑郁症、双相情感障碍、精神分裂症)、癌症(前列腺)、创伤(急诊室)和传染病(艾滋病)。总之,二期研究将为三期商业化奠定必要的技术基础,目标是提供一套新的分类分析方法作为先进的统计工具,改善流行病学、临床和公共卫生研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven S Henley其他文献

Steven S Henley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven S Henley', 18)}}的其他基金

Developing Robust Chronic Critical Illness Risk Models
开发稳健的慢性危重疾病风险模型
  • 批准号:
    8979823
  • 财政年份:
    2015
  • 资助金额:
    $ 85.72万
  • 项目类别:
Robust Suicide/Reinjury Risk Models to Assess Healthcare Systems
用于评估医疗保健系统的稳健自杀/再伤风险模型
  • 批准号:
    8781864
  • 财政年份:
    2014
  • 资助金额:
    $ 85.72万
  • 项目类别:
Multimodel Spaces for Robust Inference
用于稳健推理的多模型空间
  • 批准号:
    8738691
  • 财政年份:
    2013
  • 资助金额:
    $ 85.72万
  • 项目类别:
Multimodel Spaces for Robust Inference
用于稳健推理的多模型空间
  • 批准号:
    8592200
  • 财政年份:
    2013
  • 资助金额:
    $ 85.72万
  • 项目类别:
Robust Classification Methods for Categorical Regression
分类回归的稳健分类方法
  • 批准号:
    7686932
  • 财政年份:
    2003
  • 资助金额:
    $ 85.72万
  • 项目类别:
Robust Classification Methods for Categorical Regression
分类回归的稳健分类方法
  • 批准号:
    6645565
  • 财政年份:
    2003
  • 资助金额:
    $ 85.72万
  • 项目类别:
Robust Missing Data Methods for Categorical Regression
用于分类回归的稳健缺失数据方法
  • 批准号:
    7122096
  • 财政年份:
    2002
  • 资助金额:
    $ 85.72万
  • 项目类别:
Robust Missing Data Methods for Categorical Regression
用于分类回归的稳健缺失数据方法
  • 批准号:
    6953713
  • 财政年份:
    2002
  • 资助金额:
    $ 85.72万
  • 项目类别:
Robust Missing Data Methods for Categorical Regression
用于分类回归的稳健缺失数据方法
  • 批准号:
    6834967
  • 财政年份:
    2002
  • 资助金额:
    $ 85.72万
  • 项目类别:
Robust Missing Data Methods for Categorical Regression
用于分类回归的稳健缺失数据方法
  • 批准号:
    6549395
  • 财政年份:
    2002
  • 资助金额:
    $ 85.72万
  • 项目类别:

相似海外基金

Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335802
  • 财政年份:
    2024
  • 资助金额:
    $ 85.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335801
  • 财政年份:
    2024
  • 资助金额:
    $ 85.72万
  • 项目类别:
    Standard Grant
A Longitudinal Study of the Relationship between Participation in a Comprehensive Exercise Program and Academic Achievement
参加综合锻炼计划与学业成绩之间关系的纵向研究
  • 批准号:
    24K14615
  • 财政年份:
    2024
  • 资助金额:
    $ 85.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Characterizing Best Practices of Instructors who Have Narrowed Performance Gaps in Undergraduate Student Achievement in Introductory STEM Courses
合作研究:缩小本科生 STEM 入门课程成绩差距的讲师的最佳实践
  • 批准号:
    2420369
  • 财政年份:
    2024
  • 资助金额:
    $ 85.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335800
  • 财政年份:
    2024
  • 资助金额:
    $ 85.72万
  • 项目类别:
    Standard Grant
WTG: Diffusion of Research on Supporting Mathematics Achievement for Youth with Disabilities through Twitter Translational Visual Abstracts
WTG:通过 Twitter 翻译视觉摘要传播支持残疾青少年数学成就的研究
  • 批准号:
    2244734
  • 财政年份:
    2023
  • 资助金额:
    $ 85.72万
  • 项目类别:
    Standard Grant
The Impact of Emotional Experiences of Pride on Long-Term Goal Achievement Behaviors in Elite Athletes
骄傲的情感体验对优秀运动员长期目标实现行为的影响
  • 批准号:
    23K16740
  • 财政年份:
    2023
  • 资助金额:
    $ 85.72万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Meta-Analysis of the Instructional-Relational Model of Student Engagement and Math Achievement: A Moderation and Mediation Approach
学生参与度和数学成绩的教学关系模型的元分析:一种调节和中介方法
  • 批准号:
    2300738
  • 财政年份:
    2023
  • 资助金额:
    $ 85.72万
  • 项目类别:
    Standard Grant
Improving maths achievement in children with speech, language, and communication needs through 'collaborative vocabulary teaching'
通过“协作词汇教学”提高有言语、语言和交流需求的儿童的数学成绩
  • 批准号:
    2890475
  • 财政年份:
    2023
  • 资助金额:
    $ 85.72万
  • 项目类别:
    Studentship
HSI Institutional Transformation Project: Retention and Achievement for Introductory STEM English Learners (RAISE)
HSI 机构转型项目:STEM 英语入门学习者的保留和成就 (RAISE)
  • 批准号:
    2225178
  • 财政年份:
    2023
  • 资助金额:
    $ 85.72万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了