MICROMECHANICS OF THE EXTRACELLULAR MATRIX

细胞外基质的微观力学

基本信息

  • 批准号:
    6832212
  • 负责人:
  • 金额:
    $ 41.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-01-01 至 2005-12-31
  • 项目状态:
    已结题

项目摘要

Description: (From the applicant's abstract) The extracellular matrix (ECM) is the mechanical scaffold that determines the elasticity and tensile strength of organs and tissues and finely regulates their development by controlling cell adhesion and migration. The ECM is formed by modular proteins and polysaccharides knitted together by self-assembly and through interactions with the cell adhesion receptors of a variety of cell types. Mechanical forces play important roles in ECM assembly and function. ECM fibrils are pre-stretched up to four times their resting length and are thought to translate mechanical forces into biological signals through cryptic binding sites that are exposed by mechanical unfolding. However, nothing is known about the molecular basis of the mechanical extensibility and mechanical signaling of the molecules composing the ECM. The long term aim of this proposal is to determine the force driven conformational changes that allow the ECM molecules to extend under an applied force and turn this force into a cellular signal. Towards this aim we will combine cellular and molecular biological techniques together with state of the art force spectroscopy (AFM) techniques and GFP based fluorescence imaging techniques, capable of observing force driven conformational changes in single molecules. During our first grant period we propose to focus on fibronectin and heparin, abundant molecules which are thought to play crucial mechanical roles in the ECM and have a central function in general animal physiology and pathology. We will use force spectroscopy to examine the mechanical unfolding of native fibronectin and of selected fibronectin modules that are known to play important mechanical roles in matrix assembly. We will engineer recombinant fibronectin proteins designed with specific mechanical properties that then will be transfected into CHO cells for fibronectin secretion and matrix assembly. We will use novel GFP based energy transfer probes in order to measure the resting force per molecule and to determine if unfolding occurs in vivo. We will also use force spectroscopy to detect force driven conformations in matrix glycosaminoglycans, in particular of heparin. We will use GFP probes to examine the binding of fibronectin modules to heparin under a stretching force. Mechanical forces play a critical role in ECM assembly and function. The proposed experiments will investigate, for the first time, the molecular basis of matrix mechanics. The findings may be of great importance for organ and tissue engineering and wound repair.
描述:(来自申请人的摘要)细胞外基质(ECM)是 机械支架,决定弹性和拉伸强度 并通过控制细胞来精细地调节它们的发育 粘附和迁移。ECM由模块化蛋白质形成, 多糖通过自组装和与 多种细胞类型的细胞粘附受体。机械力作用 在ECM组装和功能中的重要作用。ECM纤维被预先拉伸 四倍于它们静止时的长度, 通过暴露的隐蔽结合位点, 通过机械展开。然而,我们还不知道 分子的机械延展性和机械信号 组成ECM。该提案的长期目标是确定力量 驱动的构象变化,允许ECM分子在一个 并将这种力转化为细胞信号。为了这个目标,我们 将联合收割机结合细胞和分子生物学技术, 现有技术的力光谱(AFM)技术和基于GFP的荧光 成像技术,能够观察力驱动的构象变化, 单分子在我们的第一个赠款期间,我们建议重点关注 纤维连接蛋白和肝素,这些丰富的分子被认为在 在ECM中的机械作用,并在一般动物中具有中枢功能 生理学和病理学。我们将使用力谱来检查 天然纤连蛋白和所选纤连蛋白模块的机械解折叠 已知其在基体组装中起重要的机械作用。我们将 用特异性机械设计的工程重组纤连蛋白 然后将其转染到CHO细胞中用于纤连蛋白的性质 分泌和基质组装。我们将使用新的基于GFP的能量转移 探针,以测量每个分子的静止力,并确定 解折叠发生在体内。我们还将使用力谱来检测力 基质糖胺聚糖中的驱动构象,特别是肝素。我们 将使用GFP探针来检查纤连蛋白模块与肝素的结合 在拉伸力的作用下机械力在电解加工中起着关键作用 装配和功能。拟议的实验将调查,首先, 时间,矩阵力学的分子基础。这些发现可能对 对器官和组织工程以及伤口修复的重要性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Julio M Fernandez其他文献

Julio M Fernandez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Julio M Fernandez', 18)}}的其他基金

2012 Single-Molecule Approaches to Biology Gordon Research Conference
2012 年单分子生物学方法戈登研究会议
  • 批准号:
    8307605
  • 财政年份:
    2012
  • 资助金额:
    $ 41.59万
  • 项目类别:
MICROMECHANICS OF THE EXTRACELLULAR MATRIX
细胞外基质的微观力学
  • 批准号:
    6225847
  • 财政年份:
    2001
  • 资助金额:
    $ 41.59万
  • 项目类别:
Nanomechanics of the extracellular matrix
细胞外基质的纳米力学
  • 批准号:
    7879801
  • 财政年份:
    2001
  • 资助金额:
    $ 41.59万
  • 项目类别:
MICROMECHANICS OF THE EXTRACELLULAR MATRIX
细胞外基质的微观力学
  • 批准号:
    6642113
  • 财政年份:
    2001
  • 资助金额:
    $ 41.59万
  • 项目类别:
MICROMECHANICS OF THE EXTRACELLULAR MATRIX
细胞外基质的微观力学
  • 批准号:
    6490751
  • 财政年份:
    2001
  • 资助金额:
    $ 41.59万
  • 项目类别:
Micromechanics of the Extracellular Matrix
细胞外基质的微观力学
  • 批准号:
    7331524
  • 财政年份:
    2001
  • 资助金额:
    $ 41.59万
  • 项目类别:
Nanomechanics of the extracellular matrix
细胞外基质的纳米力学
  • 批准号:
    8062226
  • 财政年份:
    2001
  • 资助金额:
    $ 41.59万
  • 项目类别:
Nanomechanics of bacterial adhesion
细菌粘附的纳米力学
  • 批准号:
    9145721
  • 财政年份:
    2001
  • 资助金额:
    $ 41.59万
  • 项目类别:
MICROMECHANICS OF THE EXTRACELLULAR MATRIX
细胞外基质的微观力学
  • 批准号:
    6694409
  • 财政年份:
    2001
  • 资助金额:
    $ 41.59万
  • 项目类别:
Micromechanics of the Extracellular Matrix
细胞外基质的微观力学
  • 批准号:
    7564121
  • 财政年份:
    2001
  • 资助金额:
    $ 41.59万
  • 项目类别:

相似海外基金

Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
  • 批准号:
    BB/X007669/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.59万
  • 项目类别:
    Research Grant
Nanoscopic elucidation of dynamic behavior of RNA viral nucleocapsid proteins using high-speed atomic force microscopy (HS-AFM)
使用高速原子力显微镜 (HS-AFM) 纳米级阐明 RNA 病毒核衣壳蛋白的动态行为
  • 批准号:
    24K18449
  • 财政年份:
    2024
  • 资助金额:
    $ 41.59万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unravelling dengue virus structural dynamics and conformational changes using high-speed atomic force microscopy
使用高速原子力显微镜揭示登革热病毒结构动力学和构象变化
  • 批准号:
    24K18450
  • 财政年份:
    2024
  • 资助金额:
    $ 41.59万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
State-of-the-art atomic force microscopy facilities for South Australia
南澳大利亚最先进的原子力显微镜设施
  • 批准号:
    LE240100129
  • 财政年份:
    2024
  • 资助金额:
    $ 41.59万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Atomic scale reactivity of small islands of a bimetallic alloy on ceria to small molecules investigated by ultrahigh resolution atomic force microscopy
通过超高分辨率原子力显微镜研究二氧化铈上双金属合金小岛对小分子的原子尺度反应性
  • 批准号:
    24K01350
  • 财政年份:
    2024
  • 资助金额:
    $ 41.59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
  • 批准号:
    BB/X00760X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.59万
  • 项目类别:
    Research Grant
A New Nano Tip Fabrication Technique for Atomic Force Microscopy
原子力显微镜的新型纳米尖端制造技术
  • 批准号:
    DP230100637
  • 财政年份:
    2023
  • 资助金额:
    $ 41.59万
  • 项目类别:
    Discovery Projects
Magnetic imaging by the locally induced anomalous Nernst effect using atomic force microscopy
使用原子力显微镜通过局部诱发的异常能斯特效应进行磁成像
  • 批准号:
    23K04579
  • 财政年份:
    2023
  • 资助金额:
    $ 41.59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Characterization of super adhesive aerosols on the basis of individual particle analysis using atomic force microscopy
基于原子力显微镜单个颗粒分析的超粘性气溶胶表征
  • 批准号:
    22KJ1464
  • 财政年份:
    2023
  • 资助金额:
    $ 41.59万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Using atomic force microscopy to explore the processes and re-organisations that occur during bacterial growth and division and how these are influenc
使用原子力显微镜探索细菌生长和分裂过程中发生的过程和重组以及它们如何影响细菌
  • 批准号:
    2887441
  • 财政年份:
    2023
  • 资助金额:
    $ 41.59万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了