L-functions of automorphic forms and their variants

自守形式的 L 函数及其变体

基本信息

  • 批准号:
    2599753
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Classical automorphic forms are a powerful tool for handling difficult number theoretic problems. They provide links between analytic, algebraic and geometric aspects of the study of arithmetic problems and, as such, they are at the heart of the major research programmes in Number Theory, e.g. Langlands programme. Crucial for these links are certain functions associated to automorphic forms, called L-functions, which are the subject of some of the most important conjectures of Mathematics.In recent years, investigations into the theory of automorphic forms have led into the study of variants of automorphic forms and of their L-functions, such as quasi-modular forms, harmonic Maass forms, mock modular forms, higher order modular forms and multiple Dirichlet series. In most cases, the motivation for introducing these objects was not just to generalize the classical automorphic forms and their L-functions, but to obtain novel tools to address already stated number theoretic problems. The techniques associated with these new objects in turn raise new interesting questions and highlight connections beyond the original motivating problems. For example, the theory of harmonic Maass forms and modular forms has been used to resolve problems in partitions of numbers, and higher order modular forms have been applied to Percolation Theory problems in Physics.As these techniques have only recently been discovered, they lead to a number of very interesting open questions, e.g. how to construct mock modular forms encoding specific partition functions, how to determine the arithmetic nature of high-order forms or how to use the theory of multiple Dirichlet series to bound moments of the Riemann zeta function. Questions of this type, are highly relevant both for the outstanding problems in classical automorphic forms and for the further development of the new subjects themselves. Therefore, many of these questions are very appropriate for a PhD project.
经典自守形式是处理困难数论问题的有力工具。它们提供了数学问题研究的分析,代数和几何方面之间的联系,因此,它们是数论中主要研究方案的核心,例如朗兰兹方案。对于这些联系至关重要的是与自守形式相关的某些函数,称为L-函数,这是一些最重要的数学结构的主题。近年来,对自守形式理论的研究导致了自守形式及其L-函数的变体的研究,例如拟模形式,调和Maass形式,mock模形式,高阶模形式和多重Dirichlet级数。在大多数情况下,引入这些对象的动机不仅仅是为了推广经典的自守形式及其L函数,而是为了获得新的工具来解决已经提出的数论问题。与这些新对象相关的技术反过来又提出了新的有趣的问题,并突出了原始激励问题之外的联系。例如,调和Maass形式和模形式的理论已被用于解决数的划分问题,高阶模形式已被应用于物理学中的渗透理论问题。由于这些技术最近才被发现,它们导致了许多非常有趣的开放问题,例如如何构建模拟模形式编码特定的划分函数,如何确定高阶形式的算术性质,或者如何使用多重狄利克雷级数理论来约束黎曼zeta函数的矩。这种类型的问题,对于古典自守形式中的突出问题和新学科本身的进一步发展都是高度相关的。因此,这些问题中的许多都非常适合博士项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Conference: International Conference on L-functions and Automorphic Forms
会议:L-函数和自同构国际会议
  • 批准号:
    2349888
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
L-Functions and Automorphic Forms: Algebraic and p-adic Aspects
L 函数和自守形式:代数和 p 进方面
  • 批准号:
    2302011
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Connections Between L-functions and String Theory via Differential Equations in Automorphic Forms
通过自守形式微分方程连接 L 函数和弦理论
  • 批准号:
    2302309
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Analytic problems around automorphic forms and L-functions
围绕自守形式和 L 函数的分析问题
  • 批准号:
    2302210
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
The study of Whittaker functions for degenerate characters and their application to the global theory of automorphic forms
简并特征Whittaker函数的研究及其在自守形式全局理论中的应用
  • 批准号:
    23K03079
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analytic Theory of Automorphic Forms and L-Functions
自守形式和 L 函数的解析理论
  • 批准号:
    2344044
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Relations between prehomogeneous zeta functions and automorphic forms
前齐次 zeta 函数与自同构形式之间的关系
  • 批准号:
    22K03251
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Automorphic forms on higher rank groups: Fourier coefficients, L-functions, and arithmetic
高阶群上的自守形式:傅立叶系数、L 函数和算术
  • 批准号:
    EP/T028343/1
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Analytic Theory of Automorphic Forms and L-Functions
自守形式和 L 函数的解析理论
  • 批准号:
    2001183
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Dirichlet series in several variables associated to automorphic forms and their applications to special values of automorphic L-functions
与自同构形式相关的几个变量的狄利克雷级数及其在自同构 L 函数特殊值中的应用
  • 批准号:
    19K03419
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了