Robust Data-Driven Applications in Finance
金融领域强大的数据驱动应用程序
基本信息
- 批准号:2602122
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
A fundamental aspect of asset management revolves around not only finding optimal assets to invest in but how they should trade such assets and manage the associated risk. Subsequently, portfolio optimisation has been exhaustively researched ever since the seminal paper of Modern Portfolio Theory by Harry Markowitz in 1952. Traditional methods consist of fixing a class of probabilistic parametric models (e.g Black-Scholes) and calibrating the models' parameters with respect to the empirical price process. While well-studied models provide a useful benchmark for practitioners, many parametric models fail to capture stylised facts about empirical prices, such as non-stationarity, heavy tails and volatility clustering. This is most important when working with multiple assets (such as in portfolio optimisation) since dependence structures are highly non-linear with trend and mean-reversion patterns occurring often in practice. This has led many researchers to explore data-driven model-free frameworks. While these methods can capture complex structure within the data, they are prone to parameter misestimation and overfitting to past time series data as financial markets continuously switch from one regime to another. Therefore, I aim to develop a robust extension to data-driven model-free frameworks for trading strategies and portfolio allocation in this research.In portfolio allocation problems, we are tasked with finding the optimal function that takes the past empirical price path as an input and outputs the optimal portfolio allocation with respect to the agents' preferences. For example, traditionally if we want to maximise the expected returns and minimise the variance of returns of a portfolio, we can calibrate the parameters from the past asset returns and choose the optimal portfolio allocation with respect to that probabilistic model. If we want to extend this model to capture temporal dependencies such as mean-reversion and lead-lag patterns within data then we will require a much more data-driven pathwise approach. However, defining a function on path space is a well known problem in stochastic analysis due to its infinite dimensionality. Model-free finance builds upon the tools of rough path theory to instead define an optimisation directly on path space by utilising the signature transform, a popular tool due to several of its algebraic properties. Not only can the expected signature fully characterise the law of the stochastic process, but we can use it as a finite-dimensional representation of the path. In this research I will leveraging both the power of rough path theory, as well as modern machine learning tools such as Generative Adversarial Networks (GANs) to obtain solutions that are robust to misestimation, missing information and change of measure. Future works also include solving such problems with reinforcement learning (RL), as part of an adversarial network structure that ensures the robust model is not too far from the original reference model. Applications to robust finance are not only limited to finding optimal investments either, there is a growing demand for robust market simulators that again do not overfit too much to the past time series and can adapt to market regime shifts. The outcomes for this project will be new frameworks and toolsets for investors that are independent of modelling assumptions whilst ensuring they are robust and resilient to changing states of future markets
资产管理的一个基本方面不仅围绕着寻找最佳资产进行投资,而且还围绕着如何交易这些资产和管理相关风险。自1952年哈里·马科维茨(Harry Markowitz)的《现代投资组合理论》(Modern Portfolio Theory)的开创性论文发表以来,投资组合优化一直被广泛研究。传统的方法包括固定一类概率参数模型(如Black-Scholes模型),并根据经验价格过程校准模型的参数。虽然经过充分研究的模型为从业者提供了一个有用的基准,但许多参数模型未能捕捉到有关经验价格的程式化事实,例如非平稳性,厚尾和波动聚集。这在处理多个资产时(例如在投资组合优化中)是最重要的,因为依赖结构是高度非线性的,趋势和均值回归模式在实践中经常发生。这使得许多研究人员开始探索数据驱动的无模型框架。虽然这些方法可以捕捉数据中的复杂结构,但随着金融市场不断从一种制度切换到另一种制度,它们容易对过去的时间序列数据进行参数错误估计和过度拟合。因此,我的目标是开发一个强大的扩展到数据驱动的交易策略和投资组合分配框架在本研究中,在投资组合分配问题,我们的任务是找到最优的功能,采取过去的经验价格路径作为输入和输出的最优投资组合分配相对于代理人的喜好。例如,传统上,如果我们想最大化投资组合的预期收益并最小化收益方差,我们可以根据过去的资产收益率校准参数,并根据该概率模型选择最优的投资组合配置。如果我们想扩展这个模型来捕获数据中的时间依赖性,例如均值回归和超前滞后模式,那么我们将需要一个更多的数据驱动的路径方法。然而,定义一个函数的路径空间是一个众所周知的问题,在随机分析,由于其无限维。无模型金融建立在粗糙路径理论的工具之上,而是通过利用签名变换直接在路径空间上定义优化,签名变换是一种流行的工具,因为它的几个代数属性。期望的签名不仅可以完全符合随机过程的规律,而且我们可以将其用作路径的有限维表示。在这项研究中,我将利用粗糙路径理论的力量,以及现代机器学习工具,如生成对抗网络(GANs),以获得对错误估计,丢失信息和测量变化具有鲁棒性的解决方案。未来的工作还包括使用强化学习(RL)来解决这些问题,作为对抗网络结构的一部分,以确保鲁棒模型与原始参考模型的距离不会太远。稳健金融的应用不仅限于寻找最佳投资,对稳健市场模拟器的需求也越来越大,这些模拟器不会过度拟合过去的时间序列,并且可以适应市场机制的变化。该项目的成果将为投资者提供新的框架和工具集,这些框架和工具集独立于建模假设,同时确保它们对未来市场的变化状态具有鲁棒性和弹性
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Robust Data-Driven Control for Safety-Critical Systems
针对安全关键系统的稳健数据驱动控制
- 批准号:
DP230101014 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Discovery Projects
EAGER: Robust Data-Driven Robotic Manipulation via Bayesian Inference and Passivity-Based Control
EAGER:通过贝叶斯推理和基于被动的控制进行稳健的数据驱动机器人操作
- 批准号:
2330794 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
I-Corps: Data-Driven Robust Optimization Technology for Battery Storage System Management
I-Corps:数据驱动的电池存储系统管理鲁棒优化技术
- 批准号:
2222450 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Data-Driven Robust Control Systems for Sustainability
数据驱动的鲁棒控制系统促进可持续发展
- 批准号:
RGPIN-2020-05914 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Advanced data-driven approaches to design and plan robust and sustainable network for the forest biorefinery value chains taking into account uncertainty
采用先进的数据驱动方法,在考虑不确定性的情况下,为森林生物炼制价值链设计和规划强大且可持续的网络
- 批准号:
RGPIN-2020-07141 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Robust Decentralized Control of Large-Scale Networked Systems: Fundamental Limits and Data-Driven Feedbacks
大规模网络系统的鲁棒分散控制:基本限制和数据驱动的反馈
- 批准号:
RGPIN-2019-04159 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
CAREER: A Robust and Data-driven Design for Carbon-intelligent Distributed Systems
职业生涯:碳智能分布式系统的稳健且数据驱动的设计
- 批准号:
2045641 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
Advanced data-driven approaches to design and plan robust and sustainable network for the forest biorefinery value chains taking into account uncertainty
采用先进的数据驱动方法,在考虑不确定性的情况下,为森林生物炼制价值链设计和规划强大且可持续的网络
- 批准号:
RGPIN-2020-07141 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Robust Decentralized Control of Large-Scale Networked Systems: Fundamental Limits and Data-Driven Feedbacks
大规模网络系统的鲁棒分散控制:基本限制和数据驱动的反馈
- 批准号:
RGPIN-2019-04159 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Data-Driven Robust Control Systems for Sustainability
数据驱动的鲁棒控制系统促进可持续发展
- 批准号:
RGPIN-2020-05914 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual