Data-Driven Robust Control Systems for Sustainability

数据驱动的鲁棒控制系统促进可持续发展

基本信息

  • 批准号:
    RGPIN-2020-05914
  • 负责人:
  • 金额:
    $ 2.4万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

As we are entering the era of ubiquitous artificial intelligence and automation, the sustainability of engineered systems can greatly benefit from the development of machine-learning-based adaptive robust control and optimization. The goal is to increase system automation levels towards autonomous operation while maintaining safe operation at scale and preserving the environment for future generations. While AI, or more precisely machine learning, has recently enabled incredible performance enhancement in many fields such as image recognition and natural language processing, its inherent adaptive black-box architecture has made it difficult to use in safety-critical engineering applications such as aircraft flight control or autonomous vehicles with respect to the explainability of its decision-making and its unpredictable interaction effects with the system dynamics in closed loop. Thus, the certification of such machine-learning-based safety-critical systems is currently very difficult if not outright impossible in, e.g., aerospace applications. Yet, machine learning offers a path to the autonomous future that all are preparing for. The main goal of the proposed engineering research program is thus to develop innovative, data-driven, provably robust and sustainable autonomous control systems. The applications range from electric vehicles (EV), electric autonomous vehicles (EAV), renewable energy management systems (EMS), building heating, ventilation and air conditioning (HVAC) systems, and electrified industrial processes. Classical control and optimization techniques have been very successful at increasing the efficiency and performance of individual systems such as production machines, industrial robots, ground vehicles, aircraft and industrial processes. However, such control systems may not adapt well to wildly variable conditions and rapidly changing dynamics. For instance, in the current context of fast development of automated passenger and transport vehicles, the changing conditions under which such autonomous vehicles will be operating far surpasses the ability of regular control systems based on robust, adaptive and model predictive control methods to keep the vehicle in a stable, safe zone of operation at all times. On the other hand, the ubiquity of connected autonomous cyberphysical systems such as AV offers an enormous amount of fresh data from operating peer systems that can be used to improve the behavior of the local system and allow it to respond to the demand of higher efficiency objectives of the network, such as a fleet of robo-taxis. Machine learning techniques have proven apt at capturing approximate models of fast changing dynamical environments based on real-time data, e.g., in autonomous driving. Thus, we propose to investigate the merging of machine learning and feedback control techniques to get the best of both worlds, that is, provenly-robust high-performance control systems that adapt to changing conditions.
随着我们进入无处不在的人工智能和自动化时代,工程系统的可持续性可以大大受益于基于机器学习的自适应鲁棒控制和优化的发展。目标是提高系统自动化水平,实现自主运行,同时保持大规模安全运行,并为子孙后代保护环境。虽然人工智能,或者更准确地说是机器学习,最近在图像识别和自然语言处理等许多领域实现了令人难以置信的性能增强,其固有的自适应黑箱架构使其难以用于安全关键的工程应用,例如飞机飞行控制或自主车辆,这与其决策的可解释性有关。制造及其与闭环系统动力学的不可预测的相互作用效应。因此,这种基于机器学习的安全关键系统的认证目前非常困难,如果不是完全不可能的话,例如,航空航天应用。然而,机器学习提供了一条通往所有人都在为之做准备的自主未来的道路。因此,拟议的工程研究计划的主要目标是开发创新的,数据驱动的,可证明的鲁棒性和可持续的自主控制系统。应用范围包括电动汽车(EV),电动自动驾驶汽车(EAV),可再生能源管理系统(EMS),建筑供暖,通风和空调(HVAC)系统以及电气化工业过程。经典的控制和优化技术在提高单个系统的效率和性能方面非常成功,例如生产机器,工业机器人,地面车辆,飞机和工业过程。然而,这样的控制系统可能不能很好地适应大范围变化的条件和快速变化的动态。例如,在当前自动化客运和运输车辆快速发展的背景下,这种自动驾驶车辆将运行的不断变化的条件远远超过基于鲁棒、自适应和模型预测控制方法的常规控制系统将车辆始终保持在稳定、安全的运行区域的能力。另一方面,互联的自主网络物理系统(如AV)的普遍存在提供了来自操作对等系统的大量新鲜数据,这些数据可用于改善本地系统的行为,并允许其响应网络的更高效率目标的需求,如机器人出租车车队。机器学习技术已被证明适于基于实时数据捕获快速变化的动态环境的近似模型,例如,in autonomous自动driving驾驶.因此,我们建议研究机器学习和反馈控制技术的融合,以获得两全其美的效果,也就是说,能够适应不断变化的条件的可靠鲁棒的高性能控制系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Boulet, Benoit其他文献

Multiple Kernel Learning-Based Transfer Regression for Electric Load Forecasting
  • DOI:
    10.1109/tsg.2019.2933413
  • 发表时间:
    2020-03-01
  • 期刊:
  • 影响因子:
    9.6
  • 作者:
    Wu, Di;Wang, Boyu;Boulet, Benoit
  • 通讯作者:
    Boulet, Benoit
Seamless dual brake transmission for electric vehicles: Design, control and experiment
  • DOI:
    10.1016/j.mechmachtheory.2015.08.003
  • 发表时间:
    2015-12-01
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Mousavi, Mir Saman Rahimi;Pakniyat, Ali;Boulet, Benoit
  • 通讯作者:
    Boulet, Benoit

Boulet, Benoit的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Boulet, Benoit', 18)}}的其他基金

Data-Driven Robust Control Systems for Sustainability
数据驱动的鲁棒控制系统促进可持续发展
  • 批准号:
    RGPIN-2020-05914
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling and machine learning-based control of a continuously-variable transmission system
无级变速器系统的建模和基于机器学习的控制
  • 批准号:
    570764-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Alliance Grants
Data-Driven Robust Control Systems for Sustainability
数据驱动的鲁棒控制系统促进可持续发展
  • 批准号:
    RGPIN-2020-05914
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Robust Control of Biomedical and Environmentally Sustainable Engineered Systems
生物医学和环境可持续工程系统的鲁棒控制
  • 批准号:
    RGPIN-2015-05574
  • 财政年份:
    2019
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Robust Control of Biomedical and Environmentally Sustainable Engineered Systems
生物医学和环境可持续工程系统的鲁棒控制
  • 批准号:
    RGPIN-2015-05574
  • 财政年份:
    2018
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Conceptual Design of an Efficient Heating System for an Electric Bus**
电动公交车高效加热系统的概念设计**
  • 批准号:
    534233-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Engage Grants Program
Robust Control of Biomedical and Environmentally Sustainable Engineered Systems
生物医学和环境可持续工程系统的鲁棒控制
  • 批准号:
    RGPIN-2015-05574
  • 财政年份:
    2017
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Robust Control of Biomedical and Environmentally Sustainable Engineered Systems
生物医学和环境可持续工程系统的鲁棒控制
  • 批准号:
    RGPIN-2015-05574
  • 财政年份:
    2016
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Development of optimal electric drive trains for on-road vehicles
开发道路车辆的最佳电力传动系统
  • 批准号:
    418901-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Automotive Partnership Canada Project
Robust Control of Biomedical and Environmentally Sustainable Engineered Systems
生物医学和环境可持续工程系统的鲁棒控制
  • 批准号:
    RGPIN-2015-05574
  • 财政年份:
    2015
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目

相似海外基金

Robust Data-Driven Control for Safety-Critical Systems
针对安全关键系统的稳健数据驱动控制
  • 批准号:
    DP230101014
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Projects
EAGER: Robust Data-Driven Robotic Manipulation via Bayesian Inference and Passivity-Based Control
EAGER:通过贝叶斯推理和基于被动的控制进行稳健的数据驱动机器人操作
  • 批准号:
    2330794
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
I-Corps: Data-Driven Robust Optimization Technology for Battery Storage System Management
I-Corps:数据驱动的电池存储系统管理鲁棒优化技术
  • 批准号:
    2222450
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
Data-Driven Robust Control Systems for Sustainability
数据驱动的鲁棒控制系统促进可持续发展
  • 批准号:
    RGPIN-2020-05914
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced data-driven approaches to design and plan robust and sustainable network for the forest biorefinery value chains taking into account uncertainty
采用先进的数据驱动方法,在考虑不确定性的情况下,为森林生物炼制价值链设计和规划强大且可持续的网络
  • 批准号:
    RGPIN-2020-07141
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Robust Decentralized Control of Large-Scale Networked Systems: Fundamental Limits and Data-Driven Feedbacks
大规模网络系统的鲁棒分散控制:基本限制和数据驱动的反馈
  • 批准号:
    RGPIN-2019-04159
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: A Robust and Data-driven Design for Carbon-intelligent Distributed Systems
职业生涯:碳智能分布式系统的稳健且数据驱动的设计
  • 批准号:
    2045641
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Continuing Grant
Advanced data-driven approaches to design and plan robust and sustainable network for the forest biorefinery value chains taking into account uncertainty
采用先进的数据驱动方法,在考虑不确定性的情况下,为森林生物炼制价值链设计和规划强大且可持续的网络
  • 批准号:
    RGPIN-2020-07141
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Robust Decentralized Control of Large-Scale Networked Systems: Fundamental Limits and Data-Driven Feedbacks
大规模网络系统的鲁棒分散控制:基本限制和数据驱动的反馈
  • 批准号:
    RGPIN-2019-04159
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Robust Data-Driven Applications in Finance
金融领域强大的数据驱动应用程序
  • 批准号:
    2602122
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了