A Multimodal Topological Approach to Brain Cancer: Unifying Molecular and Imaging Data
脑癌的多模态拓扑方法:统一分子和成像数据
基本信息
- 批准号:2602756
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Glioblastoma (GBM) is one of the most common and aggressive types of malignant brain tumour found in adults with a dismal rate of survival of on average only fifteen months after diagnosis and only three to five percent of GBM patients survive longer than three years. Due to the high heterogeneity of the disease, GBM is resistant to traditional treatments and prone to recurrence. Moreover, owing to the short life expectancies of GBM patients, the data available is sparse.In this project, we study two different modes of GBM data, imaging data in the form of histopathology images and molecular data involving the expression of certain characteristic genes for GBM. We look to capture both types of data under the unifying framework of topological data analysis (TDA), a novel branch of data science using mathematical tools from algebraic topology, with statistical inference methods to help us better understand and prognosticate GBM. Better prognostication can help clinicians improve treatments and the quality of life for patients. In particular, we use persistent homology, an important topological invariant within TDA, to summarize the shapes and sizes of topological features which persist across multiple scales within the data. We benefit from the flexible nature of persistent homology as its computations can be adapted to data of vastly different forms, allowing us to study both imaging and molecular data on the same basis, whilst also capturing features both on a local and global scale. For example, applying persistent homology on histology images, we aim to capture the intercellular structure of the tumours through their nuclei distributions which may include some of the hallmarks of GBM such as necrosis and hypercellularity which differ from normal cell arrangements. All features will be encapsulated within a functional summary. As such, for inference, we seek to construct functional models building on statistical techniques within functional data analysis and benefitting from tools from classical functional analysis, which may help us to deal with problems relating to both the high dimensionality of the data and the small sample size available.This project falls within the EPSRC mathematical biology research area. We will be working with the brain tumour data collected within the Imperial College Healthcare NHS Trust Neuro-Oncology Service at Charing Cross Hospital.
胶质母细胞瘤(GBM)是在成人中发现的最常见和最具侵袭性的恶性脑肿瘤之一,诊断后平均存活率仅为15个月,只有3%至5%的GBM患者存活时间超过3年。由于该疾病的高度异质性,GBM对传统治疗具有抗性,并且容易复发。此外,由于GBM患者的预期寿命较短,可用的数据很少。在这个项目中,我们研究了两种不同模式的GBM数据,一种是组织病理学图像形式的成像数据,另一种是涉及GBM某些特征基因表达的分子数据。我们希望在拓扑数据分析(TDA)的统一框架下捕获这两种类型的数据,TDA是数据科学的一个新分支,使用代数拓扑中的数学工具,并使用统计推断方法来帮助我们更好地理解和预测GBM。更好的预后可以帮助临床医生改善治疗和患者的生活质量。特别是,我们使用持久同调,一个重要的拓扑不变量在TDA中,总结拓扑特征的形状和大小,这些特征在数据中的多个尺度上持续存在。我们受益于持久同源的灵活性,因为它的计算可以适应非常不同形式的数据,使我们能够在相同的基础上研究成像和分子数据,同时也可以在局部和全球范围内捕获特征。例如,在组织学图像上应用持续同源性,我们的目标是通过其细胞核分布来捕捉肿瘤的细胞间结构,其中可能包括一些GBM的特征,如坏死和高细胞性,这些特征与正常细胞排列不同。所有特性都将封装在功能摘要中。因此,对于推理,我们寻求在功能数据分析中的统计技术基础上构建功能模型,并受益于经典功能分析的工具,这可能有助于我们处理与数据的高维性和可用的小样本量相关的问题。该项目属于EPSRC数学生物学研究领域。我们将使用查令十字医院帝国学院医疗保健NHS信托神经肿瘤学服务收集的脑肿瘤数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
The critical group of a topological graph: an approach through delta-matroid theory
拓扑图的临界群:一种通过 Delta 拟阵理论的方法
- 批准号:
EP/W033038/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
Spintronic THz Wave Emitter: an approach from Topological Weyl Semimetal Heusler alloys
自旋电子太赫兹波发射器:拓扑外尔半金属赫斯勒合金的一种方法
- 批准号:
22K14586 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
The critical group of a topological graph: an approach through delta-matroid theory
拓扑图的临界群:一种通过 Delta 拟阵理论的方法
- 批准号:
EP/W032945/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
Collaborative Research: Non-Ideal Majorana Fermions: A Practical Approach to Topological Quantum Computation
合作研究:非理想马约拉纳费米子:拓扑量子计算的实用方法
- 批准号:
2014156 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant
Evaluation method of road network vulnerability for disaster by topological approach
拓扑法灾害路网脆弱性评价方法
- 批准号:
20K22429 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Collaborative Research: Non-Ideal Majorana Fermions: A Practical Approach to Topological Quantum Computation
合作研究:非理想马约拉纳费米子:拓扑量子计算的实用方法
- 批准号:
2014157 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant
Algebra and geometry of Banach algebras and function spaces-topological approach
Banach代数和函数空间的代数和几何-拓扑方法
- 批准号:
20K03577 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Coarse Geometry: a novel approach to the Callias index & topological matter
粗几何:一种新的 Callias 索引方法
- 批准号:
DP200100729 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Projects
Stability of an interface of velocity discontinuity in a compressible fluid by approach of topological vorticity dynamics
拓扑涡动力学方法研究可压缩流体中速度不连续界面的稳定性
- 批准号:
19K03672 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
RI: Medium: Collaborative Research: Through synapses to spatial learning--a topological approach
RI:媒介:协作研究:通过突触进行空间学习——一种拓扑方法
- 批准号:
1901338 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Continuing Grant