Reinforcement Learning in Dynamic Treatment Regimes: Dealing with scarce data, safe exploration, and explainability.
动态治疗方案中的强化学习:处理稀缺数据、安全探索和可解释性。
基本信息
- 批准号:2606309
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In light of the rapid increase in accessible clinical data and the growing interest in personalized medicine among clinical scientist communities, there is an unprecedented opportunity to improve the quality of Dynamic Treatment Regimes (DTRs) using available clinical data. This is especially true in the case of chronic diseases where treatment must adapt to the ever-evolving illness and unique response of each patient, and data-driven methods prove to be an extremely helpful tool to enhance dynamic treatment. DTRs generalizes personalized treatment as a time-varying treatment setting, in which treatment in each stage is tailored suitably based on historical and up-to-date clinical information of each patient. The goal of DTRs is to improve the patient outcome according to adaptive treatment, offering invaluable assistance to the clinical decision support systems, which lie at the heart of the chronic care model. DTRs can be formulated as a sequential decision-making problem with a time-varying or dynamic state, in which a decision rule in each state depends on the treatment history and latest information of the patient. It provides a powerful tool to deal with the chronic and personal condition of each patient. Since DTRs can be considered as a sequential decision-making problem, Reinforcement learning (RL) is one of the most appropriate methods to deal with these problems. Recently, RL techniques such as Q-learning have been studied in the literature of DTRs [1] and yielded promising results. However, strict requirements such as safety and interpretability are still major challenges when applying RL in DTRs and healthcare in general. In this project we aim to look at the following research questions: 1. Could learning from the treatment results from groups of patients be used to facilitate the training process of future treatment of a patient that has similar health conditions? 2. Could prior knowledge and insight of experts be integrated into the learning process of recommendation systems? 3. Could exploration be guided to guarantee both the safety of the treatment and the improvement of treatment strategies? 4. If the method includes function approximation, how could newly discovered treatment be interpreted and verified? To answer these research questions, we rely on the novel combination of transfer learning, safe exploration, and interactive reinforcement learning. Alignment with EPSRC research themes: It is very well aligned with Artificial Intelligence and Robotics. It is also related to the Healthcare Technologies theme. Finally, it is within the scope of Information and Communication Technologies theme.
随着可访问临床数据的快速增长和临床科学家群体对个性化医学的兴趣与日俱增,利用现有临床数据提高动态治疗方案(DTRs)的质量面临前所未有的机遇。尤其是在慢性病的情况下,治疗必须适应每个患者不断演变的疾病和独特的反应,事实证明,数据驱动的方法是加强动态治疗的一个极其有用的工具。DTRS将个性化治疗概括为一种随时间变化的治疗环境,其中每个阶段的治疗都是根据每个患者的历史和最新临床信息进行适当定制的。DTRS的目标是根据适应性治疗改善患者的预后,为处于慢性护理模式核心的临床决策支持系统提供宝贵的帮助。动态决策问题可以描述为一个时变或动态的序贯决策问题,其中每个状态下的决策规则依赖于患者的治疗历史和最新信息。它提供了一个强大的工具来处理每个患者的慢性和个人情况。由于决策树可以看作是一个序贯决策问题,强化学习(RL)是处理这些问题的最合适的方法之一。最近,RL技术,如Q-学习,已经在DTRS的文献[1]中进行了研究,并取得了令人振奋的结果。然而,在DSR和一般医疗保健中应用RL时,安全性和可解释性等严格要求仍然是主要挑战。在这个项目中,我们的目标是研究以下问题:1.从一组患者的治疗结果中学习是否可以用于促进具有相似健康状况的患者未来治疗的培训过程?2.专家的先验知识和洞察力能否被整合到推荐系统的学习过程中?3.探索能否被引导以保证治疗的安全性和治疗策略的改进?4.如果该方法包括函数逼近,如何解释和验证新发现的治疗方法?为了回答这些研究问题,我们依靠迁移学习、安全探索和交互式强化学习的新颖组合。与EPSRC的研究主题保持一致:它与人工智能和机器人学非常一致。它也与医疗保健技术主题有关。最后,它属于信息和通信技术主题的范围。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
- DOI:
10.1002/cam4.5377 - 发表时间:
2023-03 - 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
- DOI:
10.1186/s12889-023-15027-w - 发表时间:
2023-03-23 - 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
- DOI:
10.1007/s10067-023-06584-x - 发表时间:
2023-07 - 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
- DOI:
10.1186/s12859-023-05245-9 - 发表时间:
2023-03-26 - 期刊:
- 影响因子:3
- 作者:
- 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
- DOI:
10.1039/d2nh00424k - 发表时间:
2023-03-27 - 期刊:
- 影响因子:9.7
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
SLAM with Reinforcement Learning for highly dynamic scenes
针对高动态场景的 SLAM 和强化学习
- 批准号:
NE/X006557/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: Hierarchical Reinforcement Learning Framework for Safe Dynamic Bipedal Locomotion
职业:安全动态双足运动的分层强化学习框架
- 批准号:
2144156 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Reinforcement learning for unknown stochastic environments with sparse and dynamic rewards
具有稀疏和动态奖励的未知随机环境的强化学习
- 批准号:
2605265 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship
CRII: CNS: IoT-aware Dynamic Spectrum Sharing in 5G C-RAN with Reinforcement Learning
CRII:CNS:通过强化学习在 5G C-RAN 中实现物联网感知动态频谱共享
- 批准号:
2105230 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Adaptive dynamic coordination of damping controllers through deep reinforcement and transfer learning
通过深度强化和迁移学习实现阻尼控制器的自适应动态协调
- 批准号:
2033910 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Establishment of Chaos-based Dynamic Reinforcement Learning as Taking an Essential Technology to Realize Emergence of Thinking in Advance
建立基于混沌的动态强化学习作为实现超前思维生成的关键技术
- 批准号:
20K11993 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
mDOT TR&D2 (Optimization): Dynamic Optimization of Continuously Adapting mHealth Interventions via Prudent, Statistically Efficient, and Coherent Reinforcement Learning
mDOT TR
- 批准号:
10541807 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Deep Reinforcement Learning for Dynamic Locomotion of Humanoid Robots
人形机器人动态运动的深度强化学习
- 批准号:
1957059 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Studentship
Reinforcement learning approach to large scale dynamic pricing
大规模动态定价的强化学习方法
- 批准号:
510818-2017 - 财政年份:2017
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Dynamic Abstraction in Reinforcement Learning
强化学习中的动态抽象
- 批准号:
0218125 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Continuing Grant