Implementing machine learning algorithms to detect and screen obstructive sleep apnoea episodes using a headband
实施机器学习算法,使用头带检测和筛查阻塞性睡眠呼吸暂停发作
基本信息
- 批准号:2733729
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Can machine learning algorithms be used to detect obstructive sleep apnoea with high accuracy and precision? How do machine learning algorithms compare to the traditional method (polysomnography) of diagnosing obstructive sleep apnoea? Implement machine learning algorithms to detect obstructive sleep apnoea episodes in patients who are suspected of obstructive sleep apnoea. It is costly and labour-intensive for a clinician to manually go through a patient's sleep data to detect obstructive sleep apnoea. Especially because there is more than one aspect that needs to be looked at. For example, sound data (snoring) is not enough on its own to be able to detect obstructive sleep apnoea. Also, the frequency of certain events is important. Therefore, the clinician needs to go through a lot of data to be able to diagnose the patient with obstructive sleep apnoea. It is likely that the human error will result from this laborious activity. Therefore, it can be difficult to make decisions and diagnose the patients if important events have been missed during the analysis. Sensor noise can also mask certain events and signals making it hard to make decisions. The general aim is to reduce the burden on clinical staff that manually sleep score patients. So, learning algorithms will be used to automatically highlight the obstructive sleep apnoea episodes. It is a mass screening tool rather than a diagnostic test. A sleep score will be generated, so a clinician can decide whether a PSG is required. The machine learning tool will use data for multiple sensors. This is to prevent the collected data being redundant if one of the sensors fail or a connection is lost etc. The algorithm will take into account multiple nights of data which will have an advantage over the expensive PSG. The band that is to be used includes multiple sensors that are essential for the detection of obstructive sleep apnoea. The band can be taken home, and it is not necessary for the patient to be at a clinic or a hospital. Therefore, the extracted data is more reliable because patients being at hospital do not feel comfortable and they might not sleep as they would at home. Different machine learning algorithms have been researched and reviewed as to which is more accurate and suitable for detection of obstructive sleep apnoea. However, there has been little implementation into an actual device.
机器学习算法能否用于高准确度和高精度地检测阻塞性睡眠呼吸暂停?机器学习算法与诊断阻塞性睡眠呼吸暂停的传统方法(多导睡眠图)相比如何?实施机器学习算法,检测疑似阻塞性睡眠呼吸暂停患者的阻塞性睡眠呼吸暂停发作。对于临床医生来说,手动检查患者的睡眠数据以检测阻塞性睡眠呼吸暂停是昂贵且劳动密集的。尤其是因为有不止一个方面需要考虑。例如,声音数据(打鼾)本身不足以检测阻塞性睡眠呼吸暂停。此外,某些事件的发生频率也很重要。因此,临床医生需要通过大量的数据才能诊断出阻塞性睡眠呼吸暂停患者。很可能,人为错误将导致这种费力的活动。因此,如果在分析期间遗漏了重要事件,则可能难以做出决策和诊断患者。传感器噪声也会掩盖某些事件和信号,使决策变得困难。总的目的是减轻临床工作人员手动睡眠评分患者的负担。因此,学习算法将用于自动突出阻塞性睡眠呼吸暂停发作。它是一种大规模筛查工具,而不是诊断测试。将生成睡眠评分,因此临床医生可以决定是否需要PSG。机器学习工具将使用多个传感器的数据。这是为了防止收集的数据是冗余的,如果一个传感器失败或连接丢失等算法将考虑到多个夜晚的数据,这将有一个优势,比昂贵的PSG。要使用的带包括多个传感器,这些传感器对于检测阻塞性睡眠呼吸暂停是必不可少的。该带可以带回家,并且患者不需要在诊所或医院。因此,提取的数据更可靠,因为患者在医院不会感到舒适,他们可能不会像在家里那样睡觉。不同的机器学习算法已被研究和审查,以更准确,更适合于阻塞性睡眠呼吸暂停的检测。然而,很少有实现到实际设备中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
非标准随机调度模型的最优动态策略
- 批准号:71071056
- 批准年份:2010
- 资助金额:28.0 万元
- 项目类别:面上项目
微生物发酵过程的自组织建模与优化控制
- 批准号:60704036
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Implementing a coupled system of integrative ML modeling and data validation for elucidating microglial therapeutic targets in neurodegenerative disease
实施集成机器学习建模和数据验证的耦合系统,以阐明神经退行性疾病中的小胶质细胞治疗靶点
- 批准号:
10699794 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Engaging Multidisciplinary Health System Stakeholders to Create a Process for Implementing Machine-Learning Enabled Clinical Decision Support
让多学科卫生系统利益相关者参与创建实施机器学习支持的临床决策支持的流程
- 批准号:
10656387 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Building and implementing a TBI prognostic model featuring real-time analysis of brain CT images
构建并实施具有脑部 CT 图像实时分析功能的 TBI 预后模型
- 批准号:
10446746 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Building and implementing a TBI prognostic model featuring real-time analysis of brain CT images
构建并实施具有脑部 CT 图像实时分析功能的 TBI 预后模型
- 批准号:
10579329 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Engaging Multidisciplinary Health System Stakeholders to Create a Process for Implementing Machine-Learning Enabled Clinical Decision Support
让多学科卫生系统利益相关者参与创建实施机器学习支持的临床决策支持的流程
- 批准号:
10451954 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Quantitative Evaluation criteria for implementing adaptive radiation therapy in head and neck IMRT
头颈调强放射治疗实施适应性放射治疗的定量评价标准
- 批准号:
21K07741 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
SBIR Phase I: Implementing AL-enhanced Machine-Learning for Advanced Electrochemical Manufacturing
SBIR 第一阶段:为先进电化学制造实施 AL 增强机器学习
- 批准号:
2041577 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Development of a web-based platform implementing novel Predictor of Skin Sensitization for Medical Devices (PreSS/MD)
开发基于网络的平台,实施新型医疗器械皮肤过敏预测器 (PreSS/MD)
- 批准号:
10079701 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Untangling Natural Aerosol Processes in Polar Regions by Implementing Novel Machine Learning Techniques
通过实施新颖的机器学习技术来解开极地地区的自然气溶胶过程
- 批准号:
2238180 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Studentship
Implementing Precision Medicine: Determinants of Adoption in Community Oncology
实施精准医学:社区肿瘤学采用的决定因素
- 批准号:
10115125 - 财政年份:2019
- 资助金额:
-- - 项目类别: