Topics in nonparametric inference and generative modelling

非参数推理和生成建模主题

基本信息

  • 批准号:
    2734309
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Modelling and making inferences from data are fundamental tasks in statistics and applied mathematics. Many types of data relevant in applications are most naturally thought of as functions lying in an infinite-dimensional space, and the focus of this project is on theory and algorithms in this nonparametric setting.While numerical algorithms are inherently discrete, a successful philosophy is to design models directly at the infinite-dimensional level. This leads to methods which work at any resolution and avoid scaling problems as the resolution is refined. To give just one example of this strategy, the preconditioned Crank-Nicolson MCMC algorithm of Cotter et al. (2013) allows for sampling from probability densities in very high dimension without the degradation of performance associated with classical MCMC algorithms.The main tasks that will be considered in this project are generative modelling and Bayesian inference, with the latter motivated primarily by applications to Bayesian inverse problems. Generative models seek to approximate an unknown data distribution from samples, imposing few prior assumptions on the structure of the data distribution. Inference problems, on the other hand, seek to combine a (possibly uncertain) statistical model with data, using Bayes' rule to assimilate data in a coherent way. Inspired by recent developments in learnable neural operators between function spaces, one goal is to adapt existing generative models such as normalising flows to the continuum setting to allow for sampling and density estimation at any resolution. This complements other recently proposed generative models on function spaces based on generative adversarial networks (GANs) and diffusion models.The use of algorithms designed at the continuum level raises many new questions about well-posedness and convergence. The theory surrounding nonparametric generative models is particularly immature, and many questions about the well-posedness and convergence properties of these models remain open. There are also many open questions of relevance to Bayesian inference in infinite dimensions, and a particular focus - motivated by the needs of inverse problems - is on whether the posterior distribution in Bayesian inference has a well-defined maximum a posteriori estimator in the nonparametric setting. Whether such a mode exists is subtle and has led to the development of an abstract theory, for which many questions remain unresolved. This theory also informs algorithmic developments: modes of the posterior of a Bayesian inverse problem can be viewed as tractable variational approximations to the full posterior and coincide with the solution given by classical methods in inverse problems.
对数据进行建模和推论是统计学和应用数学中的基本任务。与应用相关的许多类型的数据最自然地被认为是位于无限维空间中的函数,本项目的重点是在这种非参数环境下的理论和算法。虽然数值算法本质上是离散的,但一个成功的哲学是直接在无限维水平上设计模型。这导致了在任何分辨率下工作的方法,并在分辨率细化时避免了缩放问题。仅举这一策略的一个例子,Cotter等人的预条件Crank-Nicolson MCMC算法。(2013)允许在不降低与经典MCMC算法相关的性能的情况下从非常高维的概率密度中进行采样。本项目将考虑的主要任务是产生式建模和贝叶斯推理,后者的主要动机是应用于贝叶斯反问题。生成性模型试图从样本中近似未知的数据分布,对数据分布的结构施加很少的先验假设。另一方面,推理问题寻求将(可能不确定的)统计模型与数据相结合,使用贝叶斯规则以一致的方式同化数据。受到函数空间之间可学习神经算子的最新发展的启发,一个目标是使现有的生成模型(如将流归一化)适应连续统设置,以允许在任何分辨率下进行采样和密度估计。这是对最近提出的基于生成对抗网络(GANS)和扩散模型的函数空间生成模型的补充。在连续统水平上设计的算法的使用提出了许多关于适定性和收敛的新问题。围绕非参数产生式模型的理论尤其不成熟,关于这些模型的适定性和收敛性质的许多问题仍然悬而未决。在无限维贝叶斯推理中也有许多未解决的问题,一个特别的焦点--出于反问题的需要--是关于贝叶斯推理中的后验分布在非参数设置下是否具有明确定义的最大后验估计。这种模式是否存在是微妙的,并导致了一种抽象理论的发展,其中许多问题仍未解决。这一理论还启发了算法的发展:贝叶斯反问题的后验模式可以看作是对完全后验的易处理的变分逼近,并且与反问题的经典方法所给出的解相吻合。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
  • DOI:
    10.1002/cam4.5377
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4
  • 作者:
  • 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
  • DOI:
    10.1186/s12889-023-15027-w
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
  • 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
  • DOI:
    10.1007/s10067-023-06584-x
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
  • 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
  • DOI:
    10.1186/s12859-023-05245-9
  • 发表时间:
    2023-03-26
  • 期刊:
  • 影响因子:
    3
  • 作者:
  • 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
  • DOI:
    10.1039/d2nh00424k
  • 发表时间:
    2023-03-27
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

半参数空间自回归面板模型的有效估计与应用研究
  • 批准号:
    71961011
  • 批准年份:
    2019
  • 资助金额:
    16.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Improvement of nonparametric inference based on kernel type estimation and resampling method, and its application
基于核类型估计和重采样方法的非参数推理改进及其应用
  • 批准号:
    22K11939
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Semi-parametric and Nonparametric Inference
半参数和非参数推理
  • 批准号:
    RGPIN-2022-04799
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Constrained Nonparametric Inference and Data Visualization through Data Sharpening
通过数据锐化进行约束非参数推理和数据可视化
  • 批准号:
    RGPIN-2019-04439
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Nonparametric Estimation and Inference with Network Data
网络数据的非参数估计和推理
  • 批准号:
    2210561
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Nonparametric Bayesian inference with single and multivariate random probability measures; heavy tailed time series.
使用单变量和多元随机概率测量的非参数贝叶斯推理;
  • 批准号:
    RGPIN-2018-04008
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Nonparametric Inference for Convex Functions and Continuous Treatment Effects
凸函数和连续治疗效果的非参数推理
  • 批准号:
    2210312
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Nonparametric Statistical Inference for Time Series Trend Analysis, and Statistical Modelling Methods with Applications in Health Research and Environmental Science
时间序列趋势分析的非参数统计推断以及在健康研究和环境科学中应用的统计建模方法
  • 批准号:
    RGPIN-2018-05578
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: New Paradigms of Estimation and Inference in Constrained Nonparametric Models
职业:约束非参数模型中估计和推理的新范式
  • 批准号:
    2143468
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Nonparametric Methodology for Learning from People: Inference, Algorithms, and Optimality
向人学习的非参数方法:推理、算法和最优性
  • 批准号:
    2210734
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Foundations for Bayesian Nonparametric Causal Inference
职业:贝叶斯非参数因果推理基础
  • 批准号:
    2144933
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了