Probabilistic deep learning approaches in medical imaging
医学成像中的概率深度学习方法
基本信息
- 批准号:2736482
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In medicine today, the use of imaging data plays an indispensable role across all aspects of care and spans most medical domains. The effective analysis of this data is paramount, requiring accurate, reliable, and efficient tools. Artificial Intelligence (AI) has emerged as a transformative solution, extensively applied across diverse imaging modalities and diseases. AI has notably enhanced the precision and efficiency of image analysis while reducing the burden on clinicians. However, a challenge persists in the form of AI models struggling to generalize across disparate data sources, such as different hospitals or imaging devices, and adapting to different diagnostic tasks. One promising avenue to address these challenges is the application of statistical and probabilistic approaches to AI models. These approaches can enhance model robustness and reliability, but have yet to be fully explored, particularly within the realm of medical imaging. This research gap forms the basis of my DPhil project. My project will focus on the development and evaluation of probabilistic deep learning tools tailored to medical imaging, using methods from both frequentist and Bayesian statistics. This includes building novel models which are robust to out-of-distribution data, can be trusted, and from which causal, correlative, and confounding effects can be distinguished. A particular focus will be placed on the development of models which can associate a confidence estimate or distribution to each of their predictions. To date, most classical deep learning models only provide a point-estimate of their prediction, and "don't know what they don't know", which can be particularly problematic when they are presented with images from a different distribution to those with which they were trained. Quantifying uncertainty is key to models being trusted by clinicians, especially in decision-sensitive contexts such as healthcare. Despite this, existing medical imaging models which quantify uncertainty, such as Bayesian neural networks or Monte Carlo dropout methods, often incur significantly higher computational costs, as they involve calculating a distribution over each of the models' weights and training a series of networks with different activations for each layer respectively. This project will therefore aim to develop such models which can reliably estimate their uncertainty while maintaining prediction accuracy and low computational cost. I will primarily use multimodal Positron Emission Tomography and Computed Tomography (PET/CT) data of patients with tumours in order to develop and test these models. This type of data would particularly benefit from uncertainty-aware models as there is extensive inter-scanner variability as well as variability in the interpretation of the scans by clinicians. This would benefit the wider deep learning research community, as code would be open-sourced and methods shared, as well as the clinic, by providing safer and more trustworthy methods. For instance, this would be important in the use of PET/CT tumour segmentation to guide radiotherapy, as having a map of the uncertainty across the predicted tumour area would avoid targeting of any potentially healthy areas, eg at the margins, which are notoriously harder to segment. The company GE Healthcare will be involved in the project as the industrial partner and will also help provide curated dataset(s) that I can work with. This project aligns with EPSRC's strategies and research areas. Specifically, this project falls within the following EPSRC research areas: - Artificial intelligence technologies - Image and vision computing - Medical imaging - Statistics and applied probability.
在当今的医学中,成像数据的使用在护理的各个方面发挥着不可或缺的作用,并且涵盖了大多数医学领域。对这些数据的有效分析至关重要,需要准确、可靠和高效的工具。人工智能 (AI) 已成为一种变革性解决方案,广泛应用于不同的成像模式和疾病。人工智能显着提高了图像分析的精度和效率,同时减轻了临床医生的负担。然而,人工智能模型仍然存在一个挑战,即难以跨不同的数据源(例如不同的医院或成像设备)进行泛化,并适应不同的诊断任务。解决这些挑战的一个有希望的途径是将统计和概率方法应用于人工智能模型。这些方法可以增强模型的稳健性和可靠性,但尚未得到充分探索,特别是在医学成像领域。这一研究空白构成了我的哲学博士项目的基础。我的项目将侧重于使用频率统计和贝叶斯统计方法来开发和评估针对医学成像的概率深度学习工具。这包括建立对分布外数据稳健、可信的新颖模型,并且可以从中区分因果效应、相关效应和混杂效应。将特别关注模型的开发,该模型可以将置信估计或分布与每个预测相关联。迄今为止,大多数经典深度学习模型仅提供其预测的点估计,并且“不知道自己不知道什么”,当向它们呈现与训练时分布不同的图像时,这可能会特别成问题。量化不确定性是临床医生信任模型的关键,特别是在医疗保健等决策敏感的环境中。尽管如此,现有的量化不确定性的医学成像模型(例如贝叶斯神经网络或蒙特卡洛丢失方法)通常会产生明显更高的计算成本,因为它们涉及计算每个模型权重的分布并分别训练一系列具有不同激活值的网络。因此,该项目的目标是开发这样的模型,能够可靠地估计其不确定性,同时保持预测准确性和较低的计算成本。我将主要使用肿瘤患者的多模态正电子发射断层扫描和计算机断层扫描 (PET/CT) 数据来开发和测试这些模型。此类数据将特别受益于不确定性感知模型,因为扫描仪之间存在广泛的差异,以及临床医生对扫描的解释也存在差异。这将有利于更广泛的深度学习研究社区,因为代码将是开源的,方法将是共享的,并且通过提供更安全、更值得信赖的方法,也将有利于诊所。例如,这对于使用 PET/CT 肿瘤分割来指导放射治疗非常重要,因为拥有预测肿瘤区域的不确定性图将避免瞄准任何潜在的健康区域,例如边缘,这是出了名的难以分割。 GE Healthcare 公司将作为工业合作伙伴参与该项目,并将帮助提供我可以使用的精选数据集。该项目符合 EPSRC 的战略和研究领域。具体来说,该项目属于以下 EPSRC 研究领域: - 人工智能技术 - 图像和视觉计算 - 医学成像 - 统计和应用概率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
- DOI:
10.1002/cam4.5377 - 发表时间:
2023-03 - 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
- DOI:
10.1186/s12889-023-15027-w - 发表时间:
2023-03-23 - 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
- DOI:
10.1007/s10067-023-06584-x - 发表时间:
2023-07 - 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
- DOI:
10.1186/s12859-023-05245-9 - 发表时间:
2023-03-26 - 期刊:
- 影响因子:3
- 作者:
- 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
- DOI:
10.1039/d2nh00424k - 发表时间:
2023-03-27 - 期刊:
- 影响因子:9.7
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
基于深穿透拉曼光谱的安全光照剂量的深层病灶无创检测与深度预测
- 批准号:82372016
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
GREB1突变介导雌激素受体信号通路导致深部浸润型子宫内膜异位症的分子遗传机制研究
- 批准号:82371652
- 批准年份:2023
- 资助金额:45.00 万元
- 项目类别:面上项目
基于Deep Unrolling的高分辨近红外二区荧光分子断层成像方法研究
- 批准号:12271434
- 批准年份:2022
- 资助金额:46 万元
- 项目类别:面上项目
基于深度森林(Deep Forest)模型的表面增强拉曼光谱分析方法研究
- 批准号:2020A151501709
- 批准年份:2020
- 资助金额:10.0 万元
- 项目类别:省市级项目
面向Deep Web的数据整合关键技术研究
- 批准号:61872168
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于语义计算的海量Deep Web知识探索机制研究
- 批准号:61272411
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
Deep Web数据集成查询结果抽取与整合关键技术研究
- 批准号:61100167
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Accelerating Probabilistic Predictions of Sea-level Rise with Deep Learning
职业:利用深度学习加速海平面上升的概率预测
- 批准号:
2238316 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Probabilistic deep learning models and integrated biological experiments for analyzing dynamic and heterogeneous microbiomes
用于分析动态和异质微生物组的概率深度学习模型和集成生物实验
- 批准号:
10622713 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Illuminating the dark metabolome via deep learning and probabilistic graphical models
通过深度学习和概率图模型照亮黑暗代谢组
- 批准号:
544268-2020 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
ERI: Harnessing Probabilistic Deep Learning Method Integrated with Tailored Features for Enhanced Real-Time Machinery Fault Diagnosis and Prognosis
ERI:利用概率深度学习方法与定制特征相结合,增强实时机械故障诊断和预测
- 批准号:
2138522 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Probabilistic Inference and Deep Learning
概率推理和深度学习
- 批准号:
CRC-2017-00265 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Canada Research Chairs
Applying Deep Learning Techniques to Improve Probabilistic Path Planning Efficiency for Mobile Manipulators
应用深度学习技术提高移动机械手的概率路径规划效率
- 批准号:
575601-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
STTR Phase II: Probabilistic and Explainable Deep Learning for the Intuitive Predictive Maintenance of Industrial and Agricultural Equipment
STTR 第二阶段:用于工业和农业设备直观预测维护的概率和可解释深度学习
- 批准号:
2222630 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Cooperative Agreement
Illuminating the dark metabolome via deep learning and probabilistic graphical models
通过深度学习和概率图模型照亮黑暗代谢组
- 批准号:
544268-2020 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Optimisation of Probabilistic Deep Learning Approaches for Hardware Acceleration
用于硬件加速的概率深度学习方法的优化
- 批准号:
2621264 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship
CAREER: Learning Structured Representations with Deep Probabilistic Programs
职业:通过深度概率程序学习结构化表示
- 批准号:
2047253 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant














{{item.name}}会员




