Mathematical modelling of the role of cell heterogeneity in promoting melanoma metastasis

细胞异质性在促进黑色素瘤转移中作用的数学模型

基本信息

  • 批准号:
    2736674
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Melanoma is the most aggressive skin cancer. Survival rates are excellent if it is diagnosed early. However if the tumour metastasises (or spreads), five-year survival rates drop from about 99% to 30%. Understanding how metastasis occurs is crucial for understanding how melanoma progresses and for identification of new treatments that could prevent it.Analysis of patient biopsies shows that melanomas are highly heterogeneous and contain at least five different transcriptional cell states. Amongst the most prominent are highly proliferative and invasive states. While both these cell states are seen in nearly all patients, little is known about how cells in these different states interact, and the impact such interactions have on tumour progression. Recent experiments in the White lab have shown that co-cultures of proliferative and invasive cells spontaneously form spatially structured clusters, with invasive cells surrounded by an outer rim of proliferating cells. Additional in vivo experiments show that these heterogeneous clusters metastasise at rates which are significantly higher than clusters comprising proliferative or invasive cells alone.The aim of this project will be to understand how interactions between proliferative and invasive cells enhance the ability of heterogeneous cell clusters to metastasise and how these interactions may be targeted to inhibit melanoma spread. To achieve this, we will develop mechanistic mathematical models that describe how metastatic clusters form at primary tumour locations, their behaviour during the migratory phase, and how they colonise secondary tissues.Over the course of the project, we will develop and analyse a series of increasingly complex mathematical models to better understand the process of melanoma metastasis. Initially we will develop an ordinary differential equation model for a well-mixed population of cells that is based upon the coagulation-fragmentation framework, and we will compare predictions with stochastic simulations of the corresponding cell-level behaviours. We will validate our models using time course data collected from in vitro experiments carried out in the White lab, which consists of the number of proliferative and invasive cells in each cluster over time. This will allow us to pin down the mathematical kernels governing the size-dependent rates of coagulation and fragmentation. We will then explore the range of possible behaviours using a global parameter sensitivity analysis.To understand the spatial architecture of the clusters of proliferative and invasive cells in melanoma clusters during metastasis we will subsequently develop an agent-based model of cluster formation. We will then extend the agent-based model to include additional transcriptional cell states, the number and properties of these states being determined through the analysis of transcriptomics data collected in the White lab.The process of metastasis is not well understood, and the development of a collection of data-driven mathematical models will allow us to run simulations and mock experiments on a level that is impossible in a purely biological lab-based research process. The simulation results will be used to inform future experimental design, and suggest possible treatments. This creates a symbiotic relationship between the models and experiments leading to both mathematically and biologically relevant conclusions.The potential impact of this research extends far beyond just melanoma as the process of clustering and metastasis is also not unique to melanoma. Therefore, results found could also be applicable to both melanoma and other cancers to improve possible patient outcomes.This project falls within the EPSRC Mathematical Biology research area. It is jointly supervised by faculty from the Mathematical Institute and Ludwig Institute for Cancer Research, University of Oxford.
黑色素瘤是最具侵袭性的皮肤癌。如果早期诊断,生存率很高。然而,如果肿瘤转移(或扩散),五年生存率从99%下降到30%。了解转移是如何发生的是至关重要的了解如何黑色素瘤的进展,并确定新的治疗方法,可以防止它。分析病人活检显示,黑色素瘤是高度异质性,并包含至少五个不同的转录细胞状态。其中最突出的是高度增殖和侵入性状态。虽然这两种细胞状态几乎在所有患者中都能看到,但人们对这些不同状态的细胞如何相互作用以及这种相互作用对肿瘤进展的影响知之甚少。白色实验室的最新实验表明,增殖细胞和侵袭细胞的共培养物自发地形成空间结构化的簇,其中侵袭细胞被增殖细胞的外缘包围。额外的体内实验表明,这些异质细胞簇的转移率显着高于单独包含增殖或侵袭性细胞的细胞簇。该项目的目的是了解增殖细胞和侵袭性细胞之间的相互作用如何增强异质细胞簇的转移能力,以及如何靶向这些相互作用来抑制黑色素瘤的扩散。为了实现这一目标,我们将开发描述转移簇如何在原发肿瘤位置形成的机制数学模型,它们在迁移阶段的行为,以及它们如何在继发组织中定植。在项目过程中,我们将开发和分析一系列日益复杂的数学模型,以更好地了解黑色素瘤转移的过程。最初,我们将开发一个常微分方程模型的一个良好的混合人口的细胞,是基于凝固-碎裂的框架,我们将比较预测与相应的细胞水平的行为的随机模拟。我们将使用从白色实验室进行的体外实验中收集的时程数据来验证我们的模型,该数据包括每个簇中随时间推移的增殖和侵袭细胞的数量。这将使我们能够确定控制凝固和破碎的大小依赖率的数学核心。然后,我们将探索的范围内可能的behaviors.To了解集群的空间结构的增殖和侵袭细胞在黑色素瘤集群转移过程中,我们将随后开发一个基于代理的集群形成模型。然后,我们将扩展基于代理的模型,以包括额外的转录细胞状态,这些状态的数量和属性是通过分析白色实验室收集的转录组学数据来确定的。转移的过程还没有很好地理解,而数据驱动的数学模型集合的开发将使我们能够在纯生物实验室中不可能的水平上运行模拟和模拟实验-基于研究过程。模拟结果将用于指导未来的实验设计,并提出可能的治疗方法。这在模型和实验之间建立了一种共生关系,从而得出数学和生物学相关的结论。这项研究的潜在影响远远超出了黑色素瘤,因为聚集和转移的过程也不是黑色素瘤所独有的。因此,发现的结果也可以适用于黑色素瘤和其他癌症,以改善可能的患者结局。它由牛津大学数学研究所和路德维希癌症研究所的教师共同监督。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

Improving modelling of compact binary evolution.
  • 批准号:
    10903001
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Depicting disease heterogeneity in neurofibromatosis type 1 and the role of dermal fibroblasts in the establishment of microenvironment favouring NF1-associated skin tumor formation using personalized tissue-engineered 3D models
使用个性化组织工程 3D 模型描述 1 型神经纤维瘤病的疾病异质性以及真皮成纤维细胞在建立有利于 NF1 相关皮肤肿瘤形成的微环境中的作用
  • 批准号:
    478062
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Mapping heterogeneity of brain microstructural abnormalities in psychiatric disorders with normative modelling
通过规范模型绘制精神疾病中大脑微结构异常的异质性
  • 批准号:
    10658680
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Tackling the functional role of multisensory interactions in behavioural benefits: A combined EEG and computational modelling approach
解决多感官交互在行为益处中的功能作用:脑电图和计算建模相结合的方法
  • 批准号:
    2885836
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Modelling mechanisms of progressive chronic kidney disease in APOL1 high-risk live-donors using BAC-Transgenic mice
使用 BAC 转基因小鼠模拟 APOL1 高危活体供体的进行性慢性肾病的机制
  • 批准号:
    10726804
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Improving endometrial cancer risk prediction by including genetic, environmental, and temporal exposures
通过包括遗传、环境和时间暴露来改善子宫内膜癌风险预测
  • 批准号:
    473461
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Probing the role of neural synchronization in multisensory integration with dynamic brain modelling
通过动态大脑建模探讨神经同步在多感觉整合中的作用
  • 批准号:
    547131-2020
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
CO2NSTRUCT: Modelling the role of circular economy construction value chains for a carbon-neutral Europe
CO2NSTRUCT:模拟欧洲碳中和循环经济建设价值链的作用
  • 批准号:
    10037837
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Depicting disease heterogeneity in neurofibromatosis type 1 and the role of microenvironment in NF1-associated skin tumor formation through personalized tissue-engineered 3D models
通过个性化组织工程 3D 模型描绘 1 型神经纤维瘤病的疾病异质性以及微环境在 NF1 相关皮肤肿瘤形成中的作用
  • 批准号:
    473034
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Investigating the role of block kinematics and brittle fracture in rock failure mechanisms: A combined multi-sensor remote sensing-numerical modelling approach.
研究块体运动学和脆性断裂在岩石破坏机制中的作用:一种组合的多传感器遥感数值建模方法。
  • 批准号:
    RGPIN-2020-03870
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了