Data-driven methods for timeseries modelling across asset classes
跨资产类别时间序列建模的数据驱动方法
基本信息
- 批准号:2740734
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
My current research sits at the intersection between engineering and mathematical sciences, aiming to improve the modelling of cross-asset market microstructure in equity and exchange traded fund (ETF) markets. This multidisciplinary approach leverages techniques from modern statistics and machine learning to obtain insights from multi-terabyte scale, low signal to noise timeseries datasets. This research will provide the first systematic analysis of trade co-occurrence between equities and ETFs. Trade co-occurrence captures the information content of trades occurring in a short time proximity of each other. By performing the first systematic analysis of trade co-occurrence between equities and ETFs, we aim to address fundamental questions in market microstructure such as identifying arbitrage flow and detecting lead-lag relationships. The practical applications of this research are of interest to both regulators as well as many other market participants such as high frequency trading firms (HFTs), market markets (MM) and hedge funds. For instance, the understanding of price formation mechanisms is vital to regulators who seek to understand the flow of information and systemic risk within a market. Analysis of lead-lag relationships is extremely important to market participants such as HFTs and MMs who seek to optimally provide liquidity across a broad set of asset classes.To maximise the impact of my research, I am collaborating with senior quantitative researchers from Man Group. Man Group is the world's largest publicly traded hedge fund, and this partnership will ensure that our research objectives and methodologies align with the practical needs of industry. The technical expertise and guidance from industry practitioners will allow us to maximise our research impact.This research offers multiple avenues for further exploration. The methodology is general enough to be adapted to other asset classes such as options and futures. We aim to extend our framework to go beyond pairwise interactions in asset classes and move to a more general graph-based framework.This research aligns with the EPSRC's objectives of fostering innovation in mathematical sciences and engineering. By leveraging innovative statistical methods and machine learning, we aim to advance understanding in market microstructure across asset classes. The collaboration with industry stakeholders like Man Group underscores its relevance to real-world challenges, fulfilling the EPSRC's mandate for impactful and practical research.
我目前的研究位于工程和数学科学之间的交叉点,旨在改善股票和交易所交易基金(ETF)市场中跨资产市场微观结构的建模。这种多学科方法利用现代统计学和机器学习技术,从多TB规模、低信噪比的时间序列数据集中获得见解。这项研究将首次系统地分析股票和ETF之间的交易共现。交易同现捕捉在短时间内彼此接近的交易的信息内容。通过对股票和ETF之间的交易共现进行首次系统分析,我们旨在解决市场微观结构中的基本问题,例如识别套利流和检测领先滞后关系。这项研究的实际应用是感兴趣的监管机构以及许多其他市场参与者,如高频交易公司(HFT),市场市场(MM)和对冲基金。例如,对价格形成机制的理解对于寻求了解市场内信息流动和系统性风险的监管机构至关重要。领先-滞后关系分析对于市场参与者(如HFT和Risk)来说极其重要,他们寻求在广泛的资产类别中提供最佳的流动性。为了最大限度地发挥我的研究影响,我与曼氏集团的高级定量研究人员合作。曼氏集团是全球最大的上市对冲基金,此次合作将确保我们的研究目标和方法与行业的实际需求保持一致。来自行业从业者的技术专长和指导将使我们能够最大限度地发挥研究影响力。这项研究为进一步探索提供了多种途径。该方法是通用的,足以适应其他资产类别,如期权和期货。我们的目标是扩展我们的框架,超越资产类别中的成对相互作用,并转向更通用的基于图形的框架。这项研究符合EPSRC促进数学科学和工程创新的目标。通过利用创新的统计方法和机器学习,我们的目标是促进对不同资产类别市场微观结构的理解。与曼氏集团等行业利益相关者的合作强调了其与现实世界挑战的相关性,履行了EPSRC进行有影响力和实用研究的任务。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
- DOI:
10.1002/cam4.5377 - 发表时间:
2023-03 - 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
- DOI:
10.1186/s12889-023-15027-w - 发表时间:
2023-03-23 - 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
- DOI:
10.1007/s10067-023-06584-x - 发表时间:
2023-07 - 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
- DOI:
10.1186/s12859-023-05245-9 - 发表时间:
2023-03-26 - 期刊:
- 影响因子:3
- 作者:
- 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
- DOI:
10.1039/d2nh00424k - 发表时间:
2023-03-27 - 期刊:
- 影响因子:9.7
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
基于Cache的远程计时攻击研究
- 批准号:60772082
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Accurate and Individualized Prediction of Excitation-Inhibition Imbalance in Alzheimer's Disease using Data-driven Neural Model
使用数据驱动的神经模型准确、个性化地预测阿尔茨海默病的兴奋抑制失衡
- 批准号:
10727356 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Supporting data-driven decision-making to support substance use service expansion policies and to prevent overdoses
支持数据驱动的决策,以支持物质使用服务扩展政策并防止用药过量
- 批准号:
10745632 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Data-driven and science-informed methods for the discovery of biomedical mechanisms and processes
用于发现生物医学机制和过程的数据驱动和科学信息方法
- 批准号:
10624014 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Thermal noise reduction in next-generation cryogenic gravitational wave telescopes through nonlinear physical model fusion data-driven methods
通过非线性物理模型融合数据驱动方法降低下一代低温引力波望远镜的热噪声
- 批准号:
23K03437 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Data-Collection Algorithms and Data-Driven Control Methods for Guaranteed Stabilization of Nonlinear Systems with Uncertain Equilibria and Orbits
开发数据收集算法和数据驱动控制方法,以保证具有不确定平衡和轨道的非线性系统的稳定性
- 批准号:
23K03913 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrating Musculoskeletal and Data-Driven Modeling to Understand the Biomechanical Sequelae of Syndesmotic Repair
整合肌肉骨骼和数据驱动建模以了解韧带联合修复的生物力学后遗症
- 批准号:
10751099 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Learning Precision Medicine for Rare Diseases Empowered by Knowledge-driven Data Mining
通过知识驱动的数据挖掘学习罕见疾病的精准医学
- 批准号:
10732934 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Development of data-driven methods for de novo design of novel enzymes.
开发用于新型酶从头设计的数据驱动方法。
- 批准号:
2890692 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Development of data driven and AI empowered systems biology to study human diseases
数据驱动和人工智能的发展使系统生物学能够研究人类疾病
- 批准号:
10714763 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative Research: IHBEM: Data-driven multimodal methods for behavior-based epidemiological modeling
合作研究:IHBEM:基于行为的流行病学建模的数据驱动多模式方法
- 批准号:
2327710 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant