Exploring Applications of Additive Manufacturing for Flow Control, Heat Transfer and Mass Transfer

探索增材制造在流量控制、传热和传质方面的应用

基本信息

  • 批准号:
    2742549
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

This project falls within EPSRC Fluid dynamics and aerodynamics research area.This project is jointly funded by EPSRC via the Department of Engineering Science and the Oxford-Ashton Memorial scholarship, there are no companies or collaborators involved.Project Summary: Heat exchangers (HX) are a key component in heating, cooling, and power systems and improving their heat transfer performance has a direct impact on the system efficiencies and global energy sustainability. Likewise, catalytic reactors play an irreplaceable role in chemical synthesis, manufacturing and removal of harmful pollutants. The aim of this PhD is to explore how additive manufacturing (AM), combined with machine learning (ML) can make way for novel geometries that provide a step change in efficiency for both heat transfer and mass transfer applications. This project falls within the EPSRC fluid dynamics and aerodynamics research area.The intention is to numerically and experimentally explore novel geometries using AM, that could not otherwise be manufactured using conventional methods. Given that AM is still an emerging field and its application in heat and mass transfer is just being realised, the work aims to uncover the challenges and opportunities for AM based HX and catalytic surfaces. A primary area of interest are a set of mathematically defined surfaces, known as triply periodic minimal surfaces (TPMS), which can only be manufactured via AM techniques and have already shown success when applied to the area of structures and have promising thermal-hydraulic performance in initial studies. The numerical studies would be conducted using CFD, potentially utilising the in-house cluster to perform some high-fidelity simulations. These simulations would be validated using results, taken from an experimental rig designed during the project to test 3D printed geometries. The goal is to get an understanding of capability of the geometries, including pressure range, temperature range, suitable Reynolds numbers and 3D printing parameters.The design versatility afforded by AM can be exploited using machine learning to develop novel, best performing geometries. With recent advancements in the accessibility of ML tools and increases in computational power, there is a greater argument apply ML in all aspects of design. However, little work has been proposed on an AM oriented ML design workflow that incorporates CFD - an area in which this PhD hopes to explore and contribute. This would likely take the form of developing a workflow that combines density based topology optimisation and a genetic multi-objective optimisation algorithm. Density based topology optimisation has been been successfully demonstrated to improve performance in the design of diffuser and pipe bends, lending itself for use in optimising the envelope for the flow. The genetic algorithm would be used to optimise the parameters which define the internal structure of the device and would complement TPMS based structures. CFD would be integrated within the workflow to simulate the geometries and assess relative performance against specified objective functions.The ultimate aim is to combine research on ML and AM to develop an optimisation design tool, to fully define a candidate optimal geometry based on a given design envelope and boundary conditions. This would have a significant impact on the efficiency and design of heating, cooling, chemical and power systems throughout many industries, in particular reducing energy demand, cost of manufacture and allowing greater space for other components in assemblies with tight packaging requirements.
该项目属于EPSRC流体力学和空气动力学研究领域。该项目由EPSRC通过工程科学系和牛津-阿什顿纪念奖学金共同资助,没有公司或合作者参与。项目摘要:热交换器(HX)是供热、冷却和电力系统中的关键部件,其传热性能的提高直接影响到系统的效率和全球能源的可持续性。同样,催化反应器在化学合成、制造和去除有害污染物方面发挥着不可替代的作用。该博士学位的目的是探索加法制造(AM)与机器学习(ML)相结合如何为新的几何结构让路,这些几何结构为传热和传质应用提供了效率的阶梯变化。该项目属于EPSRC流体力学和空气动力学研究领域。其目的是利用AM通过数值和实验探索无法用传统方法制造的新几何形状。鉴于AM仍然是一个新兴领域,其在热质传递中的应用才刚刚实现,本工作旨在揭示AM基HX和催化表面所面临的挑战和机遇。一个主要感兴趣的领域是一组数学定义的表面,称为三周期最小表面(TPMS),它只能通过AM技术制造,在应用于结构领域时已经显示出成功,并在初步研究中具有良好的热工水力性能。数值研究将使用CFD进行,可能会利用内部集群来执行一些高保真模拟。这些模拟将使用从项目期间设计的实验台获得的结果来验证,以测试3D打印几何图形。目标是了解几何图形的性能,包括压力范围、温度范围、合适的雷诺数和3D打印参数。AM提供的设计多功能性可以利用机器学习来开发新的、性能最佳的几何图形。随着最近ML工具的可访问性和计算能力的提高,有更多的理由将ML应用于设计的方方面面。然而,在面向AM的ML设计工作流程中融入CFD的工作建议很少,这是这位博士希望探索和贡献的领域。这可能采取的形式是开发一种结合了基于密度的拓扑优化和遗传多目标优化算法的工作流程。基于密度的拓扑优化已被成功证明可以提高扩散器和弯管设计的性能,可用于优化流动的包络。遗传算法将被用来优化定义设备内部结构的参数,并将补充基于TPMS的结构。CFD将被集成到工作流程中,以模拟几何形状,并根据指定的目标函数评估相对性能。最终目的是将ML和AM的研究结合起来,开发一个优化设计工具,基于给定的设计包络和边界条件,充分定义候选的最佳几何形状。这将对许多行业的供暖、制冷、化学和电力系统的效率和设计产生重大影响,特别是降低能源需求、制造成本,并为包装要求严格的组件中的其他组件留出更大的空间。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

Applications of AI in Market Design
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研 究基金项目
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

ERI: Study of Powder Spreading Behavior for Additive Manufacturing Applications in a Novel Test Bed Environment
ERI:新型试验台环境中增材制造应用的粉末铺展行为研究
  • 批准号:
    2347633
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Manufacturing USA: Deep Learning to Understand Fatigue Performance and Processing Relationship of Complex Parts by Additive Manufacturing for High-consequence Applications
职业:美国制造:通过深度学习了解复杂零件的疲劳性能和加工关系,通过增材制造实现高后果应用
  • 批准号:
    2239307
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ADdItive MAnufacture for next generation Composite applications (ADIMAC)
下一代复合材料应用的增材制造 (ADIMAC)
  • 批准号:
    10082738
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Advancing the technology readiness level of rapid additive manufacturing microfluidic technology for personalised medicine and organ-on-a-chip applications.
提高用于个性化医疗和芯片器官应用的快速增材制造微流体技术的技术准备水平。
  • 批准号:
    10044406
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant for R&D
Additive manufacturing of a novel low-cost titanium alloy: enhancement of processing and properties for aerospace applications
新型低成本钛合金的增材制造:增强航空航天应用的加工和性能
  • 批准号:
    531108-2018
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research and Development Grants
High Entropy Alloys for Targeted Additive Manufacturing Aerospace applications (HEAT-AM)
用于航空航天应用的定向增材制造高熵合金 (HEAT-AM)
  • 批准号:
    10037223
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    BEIS-Funded Programmes
Additive Manufacturing Material Properties Generation for Critical Applications: New Approaches, Challenges, Opportunities
关键应用的增材制造材料属性生成:新方法、挑战、机遇
  • 批准号:
    2717469
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Additive Manufacturing of Polymer-based Smart Materials for Energy Harvesting Applications
用于能量收集应用的聚合物智能材料的增材制造
  • 批准号:
    560184-2021
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
CAREER: Wire Arc Additive Manufacturing of Molybdenum Alloys for High-temperature Applications: Residual Stresses and Porosity Considering Ductile-to-brittle Transition Temperature
职业:用于高温应用的钼合金的电弧增材制造:考虑延性到脆性转变温度的残余应力和孔隙率
  • 批准号:
    2141905
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mould-free Processing and Additive Manufacturing of Fibre-reinforced Thermoplastic Composites for High Performance Applications
用于高性能应用的纤维增强热塑性复合材料的无模具加工和增材制造
  • 批准号:
    RGPIN-2018-03801
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了