Self-supervised Monocular Depth Estimation
自监督单目深度估计
基本信息
- 批准号:2747408
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
"1.1 Monocular Depth EstimationA fundamental task in computer vision is understanding our and other objects'3D positioning in space. Many prior methods of depth estimation made use of stereoscopic depth, while this was an effective technique, recent advancements in Deep Neural Networks have led to the development of monocular depth estimation. Monocular depth estimation hallucinates depth from a single RGB image. Traditionally, supervised methods would have been used to determine the depth of an image per pixel as a regression task. However, recent developments use self-supervising methods that take advantage of view-synthesis between consecutive RGB frames. These methods make use of ego-pose estimation, and depth estimation to inverse warp an image frame to its consecutive image frame. This leads to the ability to not only understand the depth of a scene but to understand the camera'smotion through this scene. These methods have shown promising results and are constantly improving but there are many advancements to be made.1.2 ImprovementsIt is now a well-known issue that these methods struggle with dynamic objects, as they assume rigid motion in all scenes. Most recent methods attempt to avoid these downfalls by allowing the system to ignore the regions that cause the error in the loss function. In this project, we aim to employ these inconveniences to teach the depth and ego-pose networks more about the scene. Also, by focusing on these dynamic objects, we can track the motionof vehicles and pedestrians in a self-supervised manner, which is a vital task for autonomous driving. Furthermore, there has been a large focus on scenes that only take into consideration daylight videos with mostly sunny clear weather. Taking today's SoTA models we see that they struggle with rain, snow, fog and other more extreme weather events leading to failure cases whenever the weather is not clear. Given that in 2021 we had 149 days of rain in the UK it is a clear issue for our depth and pose models to handle rain. Modern methods attempt to handle this by fine-tuning the models for different weather events, leading to separate models for each weather condition, which demonstrates that the current depth models do not generalise well. We aim to improve this methodology while leading to much greater generalisability of the networks. As these methods are ill-posed, it is beneficial for these methods to have some form of uncertainty estimations for the depth and pose networks. Current work in this area is limited, and uncertainty estimation work needs to be developed for ego-pose and other object-pose estimations. This and further improvements for depth uncertainty would have direct industrial applications and would be a focus of this project.Penultimately, these methods struggle with texture-less regions, which has been addressed in previous work. To further these methods, we will use a more efficient loss function for view synthesis in textureless regions. Finally, we aim to handle all of these issues while leading to reductions in computation usage of the models, allowing for these methods to be applied to practical applications.1.3 Industry ApplicationMost self-driving vehicles use a sensor fusion setup of Radar, Li-DAR and stereo sensors. This setup generates accurate 3D reconstructions but leads to significant physical costs. This combination of sensors can suffer in inaccurate results as sensors may disagree. Ultimately, replacing this configuration with a simple, accurate, monocular camera setup around the vehicle would reduce the need for Li-DAR and stereo cameras for each vehicle in a fleet. While this improvement is moderate for a single vehicle, on a large fleet this would lead to compelling reductions in costs."
“1.1单目深度估计计算机视觉的一项基本任务是理解我们和其他物体在空间中的3D定位。许多先前的深度估计方法利用立体深度,虽然这是一种有效的技术,但深度神经网络的最新进展导致了单目深度估计的发展。单目深度估计从单个RGB图像产生深度幻觉。传统上,监督方法将用于确定图像的每像素深度作为回归任务。然而,最近的发展使用自我监督的方法,利用连续的RGB帧之间的视图合成。这些方法利用自我姿态估计和深度估计来将图像帧逆变形到其连续图像帧。这导致不仅能够理解场景的深度,而且能够理解相机在场景中的运动。这些方法已经显示出有希望的结果,并不断改进,但有许多进步要做。1.2提示现在是一个众所周知的问题,这些方法的斗争与动态对象,因为他们假设在所有场景中的刚性运动。最新的方法试图通过允许系统忽略导致损失函数中的误差的区域来避免这些下降。在这个项目中,我们的目标是利用这些不便来教深度和自我姿态网络更多地了解场景。此外,通过关注这些动态对象,我们可以以自我监督的方式跟踪车辆和行人的运动,这是自动驾驶的一项重要任务。此外,已经有一个很大的重点,只考虑白天的视频,主要是阳光明媚的天气场景。以今天的SoTA模型为例,我们看到它们在雨、雪、雾和其他更极端的天气事件中挣扎,导致天气不明朗时出现故障。鉴于2021年英国有149天的降雨,我们的深度和姿势模型处理降雨显然是一个问题。现代方法试图通过针对不同天气事件微调模型来处理这一问题,从而为每种天气条件建立单独的模型,这表明当前的深度模型不能很好地推广。我们的目标是改进这种方法,同时导致更大的网络的普遍性。由于这些方法是不适定的,因此对于这些方法来说,具有针对深度和姿态网络的某种形式的不确定性估计是有益的。目前在这方面的工作是有限的,不确定性估计工作需要开发的自我姿态和其他对象的姿态估计。深度不确定性的这种和进一步的改进将具有直接的工业应用,并且将是本项目的焦点。为了进一步这些方法,我们将使用一个更有效的损失函数在无纹理区域的视图合成。最后,我们的目标是处理所有这些问题,同时减少模型的计算量,使这些方法能够应用于实际应用。1.3行业应用大多数自动驾驶车辆使用雷达,Li-DAR和立体声传感器的传感器融合设置。这种设置生成精确的3D重建,但导致显著的物理成本。传感器的这种组合可能遭受不准确的结果,因为传感器可能不一致。最终,用车辆周围简单、准确的单目摄像头设置取代这种配置,将减少车队中每辆车对Li-DAR和立体摄像头的需求。虽然这种改进对于单个车辆来说是适度的,但对于大型车队来说,这将导致成本的显著降低。"
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
基于指点触控行为的身份认证与监控方法研究
- 批准号:61175039
- 批准年份:2011
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
Self-Supervised Sequential Biomedical Image-Omics
自监督序贯生物医学图像组学
- 批准号:
DE240100168 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
Investigating the Trustworthiness of Deep Pre-trained and Self-supervised Learned Model.
研究深度预训练和自监督学习模型的可信度。
- 批准号:
24K20806 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
SHF: Small: Semi-supervised Learning for Design and Quality Assurance of Integrated Circuits
SHF:小型:集成电路设计和质量保证的半监督学习
- 批准号:
2334380 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
A data-saving and self-supervised deep learning system for continuous ischemic stroke assessment
用于连续缺血性中风评估的数据保存和自我监督深度学习系统
- 批准号:
24K15011 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Self-supervised feature learning for rapid processing of marine imagery
用于快速处理海洋图像的自监督特征学习
- 批准号:
LP220200949 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Linkage Projects
Understanding the lived experience of injection drug use and access to harm reduction services in Northern and smaller urban settings: the case of Sudbury, Ontario
了解北部和较小城市环境中注射毒品使用和获得减少伤害服务的生活经历:安大略省萨德伯里的案例
- 批准号:
487998 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
深層学習は関連タスクを学べるか:関連タスク学習能力の獲得とバイオ画像への応用
深度学习能否学习相关任务:相关任务学习能力的获取及其在生物图像中的应用
- 批准号:
22KJ2396 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Cognitively engaging walking exercise and neuromodulation to enhance brain function in older adults
认知性步行锻炼和神经调节可增强老年人的大脑功能
- 批准号:
10635832 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A scalable cloud-based framework for multi-modal mapping across single neuron omics, morphology and electrophysiology
一个可扩展的基于云的框架,用于跨单个神经元组学、形态学和电生理学的多模式映射
- 批准号:
10725550 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Enhancing Hypnotic Medication Discontinuation in Primary Care through Supervised Medication Tapering and Digital Cognitive Behavioral Insomnia Therapy
通过监督药物逐渐减量和数字认知行为失眠治疗,加强初级保健中催眠药物的停药
- 批准号:
10736443 - 财政年份:2023
- 资助金额:
-- - 项目类别: