The Structural and Functional Basis of Defective X-Gating in a Novel TASK-1 Channelopathy Associated with Sleep Apnea

与睡眠呼吸暂停相关的新型 TASK-1 通道病中缺陷 X 门控的结构和功能基础

基本信息

  • 批准号:
    2748335
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

A UK-led study recently identified 28 novel genes with a high burden of de novo mutations associated with developmental disorders (Kaplanis et al, Nature, 2020). In collaboration with this group, we have exciting new evidence that a specific group of these patients, who also suffer sleep apnea, all have mutations in KCNK3 which encodes TASK-1. We have named this novel channelopathy as "Developmental Delay with Sleep Apnea" (DDSA).Sleep apnea is a common disorder affecting hundreds of millions of people worldwide and is a major public health burden with a significant economic impact. Consequently, there is an unmet clinical need for more effective treatments, but the underlying molecular mechanisms involved are often unclear.TASK1 channels have previously been implicated in sleep apnea, and drugs which inhibit TASK-1 are in clinical trials for its treatment. However, until now, mutations in KCNK3 were currently linked to a very different disorder - Primary Pulmonary Hypertension - and so the mechanistic link between TASK-1 and sleep apnea was not fully understood.We now show that, unlike the loss-of-function mutations found in PAH, these new DDSA mutations cluster near the 'X-gate', a novel structural gating motif we recently identified in a closed-state crystal structure of TASK-1 (Rödström et al, Nature, 2020). These mutants all produce a marked gain-of-function in channel activity. Importantly, they also render TASK-1 insensitive to GPCR-mediated inhibition thereby amplifying the gain-of-function effect, and we show these defects arise from dysfunctional X-gating. Fortunately, we also discovered that many TASK-1 inhibitors, including those currently in clinical trials, still inhibit the mutant channels thereby offering possible therapeutic strategies for these patients and those with sleep apnea.It is currently unclear how GPCR pathways regulate TASK-1 channel activity. It is also unknown how theX-gate opens/closes to control permeation, or how channel activity is regulated by these clinically-relevant inhibitors. A series of fundamental studies of TASK-1 channel structure, function and pharmacology are therefore needed to address this deficit.Based on these findings, and a range of new experimental tools we also have available, this project aimsto address fundamentally important questions which fall squarely within the BBSRC remit of world-leading basic bioscience for an integrated understanding of health:-How does the TASK-1 channel open and close, and how is it regulated by natural ligands?- How do novel small molecule activators and inhibitors regulate channel gating?- How is X-gating normally regulated, and how does this become defective in the disease state?Overall this project will generate a step change in our understanding of TASK-1 channels and their mechanism of regulation by GPCR coupled pathways in both health and disease. It will also address the molecular mechanism of action of new drugs being developed to target these channels.
英国领导的一项研究最近确定了28个新基因,这些基因具有与发育障碍相关的从头突变的高负担(KaPlanis等人,《自然》,2020)。与这个小组合作,我们有了令人兴奋的新证据,这些患者中的一个特定组,他们也患有睡眠呼吸暂停,都有编码TASK-1的KCNK3突变。我们将这种新的经络病命名为发育迟缓伴睡眠呼吸暂停(DDSA)。睡眠呼吸暂停是一种影响全球数亿人的常见疾病,是一种主要的公共卫生负担,具有重大的经济影响。因此,临床上对更有效的治疗方法的需求还没有得到满足,但涉及的潜在分子机制往往不清楚。TASK1通道以前被认为与睡眠呼吸暂停有关,抑制TASK-1的药物正在进行其治疗的临床试验。然而,到目前为止,KCNK3的突变与一种非常不同的疾病--原发性肺动脉高压--有关,因此TASK-1和睡眠呼吸暂停之间的机制联系还不完全清楚。我们现在表明,与在PAH中发现的功能丧失突变不同,这些新的DDSA突变聚集在“X门”附近,这是我们最近在TASK-1的闭态晶体结构中发现的一种新的结构门控基序(Rödström等人,“自然”,2020)。这些突变体都在通道活动中产生了显着的功能增益。重要的是,它们也使TASK-1对GPCR介导的抑制不敏感,从而放大了功能增益效应,我们证明这些缺陷源于功能失调的X门控。幸运的是,我们还发现许多TASK-1抑制剂,包括那些目前正在进行临床试验的药物,仍然抑制突变的通道,从而为这些患者和睡眠呼吸暂停患者提供可能的治疗策略。目前尚不清楚GPCR通路如何调节TASK-1通道的活性。也不知道X门如何开启/关闭以控制渗透,或者这些临床相关的抑制物如何调节通道活动。因此,需要对TASK-1通道的结构、功能和药理学进行一系列基础研究,以解决这一缺陷。基于这些发现,以及我们现有的一系列新的实验工具,该项目旨在解决根本上的重要问题,这些问题正好属于BBSRC对健康的综合理解:-TASK-1通道是如何打开和关闭的,它是如何被天然配体调节的?-新型小分子激活剂和抑制剂如何调节通道门控?-X门控是如何正常调节的,这是如何在疾病状态下变得有缺陷的?总体而言,这个项目将在我们对TASK-1通道及其在健康和疾病中由GPCR耦合通路调节的机制的理解上产生阶段性的变化。它还将解决正在开发的针对这些渠道的新药的分子作用机制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

高维数据的函数型数据(functional data)分析方法
  • 批准号:
    11001084
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
Multistage,haplotype and functional tests-based FCAR 基因和IgA肾病相关关系研究
  • 批准号:
    30771013
  • 批准年份:
    2007
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Structural and functional basis of bacterial transcriptional regulation
细菌转录调控的结构和功能基础
  • 批准号:
    10712023
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of Theoretical Science Basis for Predicting Structural and Functional Changes Induced by RNA Modifications
预测 RNA 修饰引起的结构和功能变化的理论科学基础的发展
  • 批准号:
    22H03686
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The structural and functional basis of defective TASK1 X-Gating in a novel channelopathy associated with sleep apnoea
与睡眠呼吸暂停相关的新型通道病中缺陷 TASK1 X-Gating 的结构和功能基础
  • 批准号:
    MR/W017741/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Studies of the structural and functional basis of neuroblastoma drug resistance
神经母细胞瘤耐药性的结构和功能基础研究
  • 批准号:
    10559501
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Structural variation in neuronal circuits as a basis for functional and behavioral individuality
神经元回路的结构变异作为功能和行为个性的基础
  • 批准号:
    10206473
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Elucidating sequence, structural and dynamic basis of the functional regulation of membrane proteins
阐明膜蛋白功能调节的序列、结构和动态基础
  • 批准号:
    10275155
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Studies of the structural and functional basis of neuroblastoma drug resistance
神经母细胞瘤耐药性的结构和功能基础研究
  • 批准号:
    10323652
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Molecular basis of neurotransmission - cryo-EM structural and functional investigation of the human serotonin receptor in a lipid environment
神经传递的分子基础 - 脂质环境中人类血清素受体的冷冻电镜结构和功能研究
  • 批准号:
    2577779
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship
Elucidating sequence, structural and dynamic basis of the functional regulation of membrane proteins
阐明膜蛋白功能调节的序列、结构和动态基础
  • 批准号:
    10710227
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
The structural and functional basis of MET exon 14 activation and acquired drug resistance
MET 外显子 14 激活和获得性耐药的结构和功能基础
  • 批准号:
    9754544
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了