Development of a bioelectronic system for applying chronobiology to improve the treatment of neurological disorders
开发生物电子系统,应用时间生物学来改善神经系统疾病的治疗
基本信息
- 批准号:2749257
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Brain stimulation therapies targeting the subthalamic nucleus (STN), ventrolateral thalamus (VL), and globus pallidus (GP) have been established as effective treatments of drug refractory symptoms of PD, ET and dystonia. DBS of the centromedian thalamic nucleus (CMN) is also emerging as a target for refractory epilepsy including severe childhood-onset epilepsy: Lennox-Gastaut syndrome (LGS). Although sleep dysfunction is a common co-morbidity of these neurological disorders and a key determinant of quality of life for patients and their families, DBS does not currently account for sleep in therapy optimization. The Picostim DyNeuMo Mk-2 introduces a combination of slow-adaptive circadian-based stimulation patterns with a fast-acting pathway for seizure management, paving the way for new neurotechnologies for applied chronobiology.The DyNeuMo research tool improves on current DBS systems (e.g. Medtronic Activa, St. Jude, and Boston Scientific DBS) providing adaptive DBS (aDBS), low power consumption, continuous stimulation, and improved symptom suppression. Recent studies have highlighted the impact of stimulation on sleep architecture - such as the interrelationship between sleep, circadian rhythms, and stimulation of the anterior nucleus (ANT) for epilepsy and PPN DBS for PD and MSA9. Emerging bioelectronic systems that can provide chronic and objective measurements of seizure activity in ambulatory epileptic patients, have amplified the growing interest in seizure forecasting and provided validation of circadian rhythms in humans. Moreover, recent studies have demonstrated that seizure timing may have a phase preference relative to multidien and circadian rhythms in interictal epileptiform activity in humans, and pharmacologically induced epileptic rats. Novel neurotechnologies and innovative platform design integrating chronobiology may provide insight into neural dynamics; circadian patterns, and brain rhythms fluctuation over time - contributing to a clinical framework for stimulation parameter optimization.The clinical hypothesis of this project is that aDBS - implementing applied chronobiology for circadian rhythm responsive and patient-specific therapies - is more effective than currently available DBS systems. The primary objective is to characterise the impact of neural stimulation on patients' sleep architecture and develop closed-loop therapies using the DyNeuMo. The secondary objective is to explore the extent of which feedback using varying biomarkers may be used to develop a DBS to afford a more comprehensive control of symptoms. In this project I will leverage a translational approach of applied neuroscience and biomimetic algorithms to:1. Refine and fully integrate the toolkit for the DyNeuMo research system using ultradian, circadian, and multidien rhythms as a feedforward control signal.2. Acquire and analyse data from the implant and characterise how physiological markers linked to sleep respond to stimulation.3. Develop and test circadian rhythm responsive stimulation protocols in investigational trials.
靶向丘脑底核(subthalamic nucleus,ENA)、丘脑腹外侧区(ventrolateral thalamus,VL)和苍白球(globus pallidus,GP)的脑刺激疗法已被确立为PD、ET和肌张力障碍的药物难治性症状的有效治疗方法。丘脑中央中核(CMN)的DBS也正在成为难治性癫痫的靶点,包括严重的儿童期发作的癫痫:Lennox-Gastaut综合征(LGS)。虽然睡眠功能障碍是这些神经系统疾病的常见并发症,也是患者及其家属生活质量的关键决定因素,但DBS目前尚未在治疗优化中考虑睡眠。Picostim DyNeuMo Mk-2将慢适应的基于昼夜节律的刺激模式与用于癫痫发作管理的快速作用通路相结合,为应用时间生物学的新神经技术铺平了道路。DyNeuMo研究工具改进了当前的DBS系统(例如Medtronic Activa、St. Jude和Boston Scientific DBS),提供自适应DBS(aDBS)、低功耗、连续刺激,改善症状抑制。最近的研究强调了刺激对睡眠结构的影响-例如睡眠、昼夜节律和刺激前核(ANT)治疗癫痫和PPN DBS治疗PD和MSA 9之间的相互关系。新兴的生物电子系统,可以提供长期和客观的测量癫痫发作活动的门诊癫痫患者,放大了越来越多的兴趣,癫痫发作预测,并提供验证的昼夜节律在人类。此外,最近的研究表明,癫痫发作的时间可能有一个相位偏好相对于multidien和昼夜节律的发作间期癫痫样活动在人类和癫痫大鼠。新的神经技术和创新的平台设计集成时间生物学可以提供洞察神经动力学,昼夜节律模式,随着时间的推移和脑节律波动-有助于刺激参数优化的临床框架。该项目的临床假设是,aDBS -实现应用时间生物学的昼夜节律响应和患者特异性治疗-比目前可用的DBS系统更有效。主要目的是验证神经刺激对患者睡眠结构的影响,并使用DyNeuMo开发闭环治疗。次要目的是探索使用不同生物标志物的反馈可用于开发DBS以提供更全面的症状控制的程度。在这个项目中,我将利用应用神经科学和仿生算法的翻译方法:1。使用超昼夜节律、昼夜节律和多昼夜节律作为前馈控制信号,完善并完全集成DyNeuMo研究系统的工具包。2.从植入物中获取和分析数据,并研究与睡眠相关的生理标记如何对刺激做出反应。3.在研究性试验中开发和测试昼夜节律响应刺激方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Multifunctional 3D Bioelectronic and Microfluidic Hybrid Systems for Online Monitoring, Regulation, and Vascularization of Organoids
用于在线监测、调节和类器官血管化的多功能 3D 生物电子和微流体混合系统
- 批准号:
10510946 - 财政年份:2022
- 资助金额:
-- - 项目类别:
SMART BIOELECTRONIC IMPLANTS FOR CONTROLLED DELIVERY OF THERAPEUTIC PROTEINS IN VIVO AND ITS APPLICATION IN LONG-TERM TREATMENT OF HEMOPHILIA A
用于体内治疗性蛋白质控制输送的智能生物电子植入物及其在血友病 A 长期治疗中的应用
- 批准号:
10446179 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Multifunctional 3D Bioelectronic and Microfluidic Hybrid Systems for Online Monitoring, Regulation, and Vascularization of Organoids
用于在线监测、调节和类器官血管化的多功能 3D 生物电子和微流体混合系统
- 批准号:
10688234 - 财政年份:2022
- 资助金额:
-- - 项目类别:
SMART BIOELECTRONIC IMPLANTS FOR CONTROLLED DELIVERY OF THERAPEUTIC PROTEINS IN VIVO AND ITS APPLICATION IN LONG-TERM TREATMENT OF HEMOPHILIA A
用于体内治疗性蛋白质控制输送的智能生物电子植入物及其在血友病 A 长期治疗中的应用
- 批准号:
10615840 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Amber-UI: A closed-loop bioelectronic system for urinary incontinence
Amber-UI:治疗尿失禁的闭环生物电子系统
- 批准号:
95110 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Collaborative R&D
Cephalopod-Inspired Bioelectronic Control of Cellular Signaling
受头足类动物启发的细胞信号生物电子控制
- 批准号:
10246105 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Flexible bioelectronic sensors for non-contact detection of obstruction in pediatric vascular shunts
用于非接触式检测儿科血管分流阻塞的柔性生物电子传感器
- 批准号:
9981298 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Flexible bioelectronic sensors for non-contact detection of obstruction in pediatric vascular shunts
用于非接触式检测儿科血管分流阻塞的柔性生物电子传感器
- 批准号:
10171845 - 财政年份:2020
- 资助金额:
-- - 项目类别:
SemiSynBio-II: A Hybrid Programmable Nano-Bioelectronic System
SemiSynBio-II:混合可编程纳米生物电子系统
- 批准号:
2027195 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
CRCNS: Improving Bioelectronic Selectivity with Intrafascicular Stimulation
CRCNS:通过束内刺激提高生物电子选择性
- 批准号:
10180964 - 财政年份:2018
- 资助金额:
-- - 项目类别: