Fast Gates

快速门

基本信息

  • 批准号:
    2749977
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Trapped-ion devices have demonstrated, on a small number of qubits, all the building-blocks required to build a quantum computer with precision better than any competing technology. However the speed of these devices, limited by the entangling gates, has not increased commensurately. The aim of this project is to change this by exploiting optical phase control to significantly speed up trapped-ion entangling gates whilst also removing several currently limiting fundamental sources of error.In preliminary work, we have recently demonstrated the first high-speed entangling logic gates for trapped-ion qubits [Schafer et al., Nature 555, 75 (2018)]. We achieved a fidelity of 99.8% for a 1.6 microsecond gate time, close to the highest reported two-qubit gate fidelities of 99.9%, but more than an order of magnitude faster. Over the course of this project we will extend this proof-of-concept technique to demonstrate the first high-speed control of multi-qubit registers.The project will involve both experimental and theoretical work, including:- developing and numerically modelling phase-controlled fast entangling gate dynamics- building a new apparatus optimised for high-speed multi-qubit entangling gates- sophisticated classical control techniques to precisely control the optical interaction phase of multi-qubit register
囚禁离子设备已经在少量的量子比特上展示了建造精度高于任何竞争技术的量子计算机所需的所有构件。然而,这些设备的速度受到纠缠之门的限制,并没有相应地增加。这个项目的目的是通过利用光学相位控制来显著加快囚禁离子纠缠门的速度,同时消除几个目前限制的基本误差源。在初步工作中,我们最近展示了第一个用于囚禁离子量子比特的高速纠缠逻辑门[Schafer等人,自然555,75(2018)]。我们在1.6微秒的门时间内实现了99.8%的保真度,接近报道的最高两量子位门保真度99.9%,但速度快了一个数量级以上。在这个项目的过程中,我们将扩展这一概念验证技术,以演示第一次高速控制多量子比特寄存器。该项目将涉及实验和理论工作,包括:-开发和数字建模相位控制快速纠缠门动力学-建立一个优化的新装置,用于高速多量子比特纠缠门-复杂的经典控制技术,以精确控制多量子比特寄存器的光学相互作用阶段

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Realization of high-fidelity quantum logic gates using electron spins on superfluid helium
利用超流氦上的电子自旋实现高保真量子逻辑门
  • 批准号:
    23K26488
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Multi-qubit gates mediated by several strongly coupled motional modes
由几种强耦合运动模式介导的多量子位门
  • 批准号:
    2889918
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Realization of high-fidelity quantum logic gates using electron spins on superfluid helium
利用超流氦上的电子自旋实现高保真量子逻辑门
  • 批准号:
    23H01795
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
LEAPS-MPS: Multiqubit Entangling Gates for Solid-State Qubit Systems
LEAPS-MPS:用于固态量子位系统的多量子位纠缠门
  • 批准号:
    2316808
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Design for the exciton-based molecular logic gates for quantum computing
用于量子计算的基于激子的分子逻辑门的设计
  • 批准号:
    22K03480
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Seventeen Towers and Seven Gates: a poetry collection; and Digging in Gallowgate: a critical study
十七楼七门:诗集;
  • 批准号:
    2719675
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Implementation of quantum LDPC codes and fault-tolerant logic gates in physical architectures
量子 LDPC 码和容错逻辑门在物理架构中的实现
  • 批准号:
    2755580
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploring quantum enhancements from indefinite causality and time-reversing gates
从无限因果关系和时间反转门探索量子增强
  • 批准号:
    2745052
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Ameliorating off-target toxicities of CAR T cells by engineering NOT gates
通过设计 NOT 门改善 CAR T 细胞的脱靶毒性
  • 批准号:
    10657356
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Ameliorating off-target toxicities of CAR T cells by engineering NOT gates
通过设计 NOT 门改善 CAR T 细胞的脱靶毒性
  • 批准号:
    10362126
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了