Understanding the role of social media in promoting anti-migration sentiment and hate crime

了解社交媒体在促进反移民情绪和仇恨犯罪方面的作用

基本信息

  • 批准号:
    2752939
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Aim and objectives This proposal aims to investigate the role of social media in influencing hate crime in the United Kingdom using Twitter, GPS data, machine learning, network science, longitudinal and causal inference approaches. Specifically, the project seeks to understand the role of social media in influencing anti-immigration sentiment, subsequent acts of violence, and how these patterns may relate to time exposure to ethnic communities. It has three objectives: 1. Identify Twitter anti-migration communities, and examine the digital and geographic context within which they emerge; 2. Assess and correct representativeness biases in Twitter data; and 3. Estimate the causal impact of anti-migration Twitter content on hate crime. The project will advance our understanding of the size and structure of online anti-migration communities and evidence on how online content can reinforce and spread xenophobic sentiment leading to hateful actions. Such evidence will help to design policy programmes to counter discrimination by leveraging on ongoing collaborations between Dr. Rowe (primary supervisor) and the United Nations and the World Bank [1]. Methodologically, the project will innovate training and deploying a machine learning model to identify anti- and pro-migration communities and will use mobile phone data to create a time-dependent measure of exposure to ethnic communities. Background Online social media platforms (OSMPs) play a pivotal role in shaping our society. It has become a main communication channel enabling social connections over distant locations across the world [2]. It has helped businesses to expand their geographical reach and launch mass scale marketing campaigns to promote their products, increasing sales and revenue [3]. At the same time, OSMPs have been under intense scrutiny, particularly during the Brexit referendum [4] and current COVID-19 pandemic [5]. OSMPs have enabled the engendering of new social processes, notably mass scale misinformation, bot farming, digital echo chambers [5], influencing our behaviours in the digital and physical world [6]. Online hate speech has been at the core of intense and polarised debate [7]. Despite growing public concern and calls for policy action, there is little empirical evidence on the ways in which hateful online content translates into real-life behaviour. At the same time, immigration is consistently identified as one of the most divisive social issues globally [8]. Racist and xenophobic content on immigration is prominent on social media. Xenophobic narratives on OSMPs have contributed to shaping migration policy and political outcomes [4]. Such narratives spread sentiments of hate, leading to more polarised societies [9] which can spill onto physical violence [1]. While prior research has used OSMP data to identify and characterise anti-immigrant narratives [10], less is known about the geographical and digital context within which they emerge. For instance, we know little about how time exposure to diverse urban environments relate to local patterns of digital anti-immigration content; how these patterns may vary across neighbourhood demographic and socio-economic features; and the extent to which echo chambers lead to the evolution of anti-migration communities on social media. To address these gaps, the project seeks to leverage on Twitter and GSP mobile phone data to identify online anti-immigration communities, and the digital and geographical contexts within which they occur; address representativeness biases in Twitter data; and assess the influence of anti-migration Twitter content on the occurrence of hate crime. Methodology The project will be divided into three stages (Ss) as outlined in Fig.1 mapping to the project objectives. Four key data sources will be used Twitter, GPS Huq, Census and hate crime data. Given ethical concerns, the data will be stored on password protected local server, accessed in a secure room and a
本提案旨在利用Twitter、GPS数据、机器学习、网络科学、纵向和因果推理方法,调查社交媒体在影响英国仇恨犯罪方面的作用。具体而言,该项目旨在了解社交媒体在影响反移民情绪、随后的暴力行为方面的作用,以及这些模式如何与接触族裔社区的时间有关。它有三个目标:1。识别Twitter上的反移民社区,并检查他们出现的数字和地理环境;2. 评估和纠正Twitter数据中的代表性偏差;和3。估计反移民推特内容对仇恨犯罪的因果影响。该项目将增进我们对在线反移民社区规模和结构的了解,并提供证据,证明在线内容如何加强和传播仇外情绪,导致仇恨行为。这些证据将有助于设计政策方案,通过利用Rowe博士(主要主管)与联合国和世界银行bbb之间正在进行的合作来打击歧视。在方法上,该项目将创新培训和部署机器学习模型,以识别反对和支持移民的社区,并将使用手机数据创建一个与时间相关的民族社区暴露度量。在线社交媒体平台(OSMPs)在塑造我们的社会方面发挥着关键作用。它已经成为一个主要的沟通渠道,使世界各地遥远的地方的社会联系成为可能。它帮助企业扩大其地理覆盖范围,并发起大规模的营销活动来推广其产品,从而增加了销售额和收入。与此同时,osmp一直受到严格审查,特别是在英国退欧公投和当前COVID-19大流行期间。osmp使新的社会进程得以产生,特别是大规模的错误信息、机器人农业、数字回声室,影响着我们在数字和现实世界中的行为。网络仇恨言论一直是激烈和两极分化辩论的核心。尽管公众的担忧与日俱增,并呼吁采取政策行动,但几乎没有经验证据表明,仇恨的网络内容是如何转化为现实生活中的行为的。与此同时,移民一直被认为是全球最具分裂性的社会问题之一。关于移民的种族主义和排外主义内容在社交媒体上很突出。关于移民移民项目的仇外言论有助于形成移民政策和政治结果。这样的叙述会传播仇恨情绪,导致社会更加两极分化,并可能蔓延到身体暴力。虽然之前的研究使用了OSMP数据来识别和描述反移民叙事,但对它们出现的地理和数字背景知之甚少。例如,我们对暴露在不同城市环境中的时间与数字反移民内容的本地模式之间的关系知之甚少;这些模式如何因社区人口和社会经济特征而异;以及回音室在多大程度上导致了社交媒体上反移民社区的演变。为了解决这些差距,该项目试图利用Twitter和GSP移动电话数据来识别在线反移民社区,以及他们发生的数字和地理环境;解决Twitter数据中的代表性偏差;并评估反移民推特内容对仇恨犯罪发生的影响。该项目将分为三个阶段(s),如图1所示,以映射项目目标。四个关键的数据来源将使用推特,GPS Huq,人口普查和仇恨犯罪数据。考虑到道德问题,数据将存储在密码保护的本地服务器上,在一个安全的房间和一个

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

PfAP2-R介导的PfCRT转录调控在恶性疟原虫对喹啉类药物抗性中的作用及机制研究
  • 批准号:
    82372275
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Sestrin2抑制内质网应激对早产儿视网膜病变的调控作用及其机制研究
  • 批准号:
    82371070
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目

相似海外基金

"I cannot keep the weight off": Understanding the role of social identity in weight loss maintenance
“我无法保持体重”:了解社会身份在维持减肥中的作用
  • 批准号:
    2867783
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding Lrig1+ in vocal fold epithelium and organoid biology
了解声带上皮和类器官生物学中的 Lrig1
  • 批准号:
    10732733
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Understanding how social interactions influence reward-seeking behaviors: Developmental mechanisms
了解社交互动如何影响寻求奖励的行为:发展机制
  • 批准号:
    10716898
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Improving our understanding of breast cancer mortality disparities through recurrence: a multi-level approach among women in Georgia
通过复发提高我们对乳腺癌死亡率差异的理解:格鲁吉亚妇女的多层次方法
  • 批准号:
    10818726
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Genomic and bioinformatic approaches for understanding the effects of childhood adversity on primary tooth formation and caries development in young children
基因组和生物信息学方法用于了解童年逆境对幼儿乳牙形成和龋齿发展的影响
  • 批准号:
    10739519
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Kipiyecipakiciipe "coming home": Establishing clinical cultural neuroscience as a tool for understanding the role of traditional cultural engagement in mitigating substance misuse and disorder
Kipiyecipakiciipe“回家”:建立临床文化神经科学作为理解传统文化参与在减轻药物滥用和疾病中的作用的工具
  • 批准号:
    10740237
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Making the Connection: Understanding the dynamic social connections impacting type 2 diabetes management among Black/African American men
建立联系:了解影响黑人/非裔美国男性 2 型糖尿病管理的动态社会联系
  • 批准号:
    10782674
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Genotyping the Understanding America Study to generate novel opportunities for research on cognitive functioning and dementia
对“理解美国研究”进行基因分型,为认知功能和痴呆症研究创造新机会
  • 批准号:
    10663049
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
COVID-19 Vaccine Uptake and Risk Mitigation Behaviors: Understanding the Role of Institutional Trust
COVID-19 疫苗接种和风险缓解行为:了解机构信任的作用
  • 批准号:
    10652864
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Understanding the role of emotion regulation flexibility in the association between daily stressors and emotional disorder symptoms in ethnic minority college students
了解情绪调节灵活性在少数民族大学生日常压力源与情绪障碍症状关联中的作用
  • 批准号:
    10749852
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了