Ceramic electrolyte design mitigating dendrites and voids at the Li anode
陶瓷电解质设计可减少锂阳极的枝晶和空隙
基本信息
- 批准号:2759597
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The demand for energy storage devices has never been greater. Lithium ion batteries have played an important role in the development of portable electronics due to their high energy densities. They are a key technology in enabling the electrification of transport and the move away from the internal combustion engine. In order to support the transition to renewable energy sources and to fully electrify transport, new materials and battery technologies will be needed. For example, solid state electrolytes make the use of a lithium metal anode possible, significantly increasing the energy safety, i.e. extending driving range. However important challenges remain to be solved if practical solid-state batteries with a lithium anode and ceramic electrolyte are to be realised. During cycling of a solid-state battery with a lithium metal anode, lithium metal is plated and stripped. This give rise to challenges at the lithium-solid electrolyte interface: how to mitigate the formation of voids at the interface on discharge (stripping) and how to suppress dendrite formation on charging (plating). We have shown the detrimental effects of voiding and have made important progress in understanding lithium dendrite growth, which ultimately leads to cell failure. This fundamental understanding has raised the possibility of controlling both the surface and bulk morphology of the ceramic electrolyte as a means of suppressing voids and dendrites, crucially at practical current densities and pressures. It is these topics that this studentship will investigate. Firstly, the surface of the solid electrolyte in contact with lithium will be modified to prevent voiding and significantly increase the stripping current density. Secondly new understanding of lithium dendrite penetration will be exploited to control the solid electrolyte morphology to realise higher current densities without dendrite growth and short-circuiting. This will also contribute to the understanding of the mechanics of sulphide-based electrolytes.Controlling the surface and bulk morphology of sulphide-based solid electrolytes and understanding the relationship between these factors and the performance of the lithium anode is scientifically and technically challenging. This project will involve designing and developing new techniques to prepare solid electrolytes with different bulk and surface morphologies, to characterise them and to fabricate cells and investigate their performance. These results will be used to produce optimised morphologies. This project will involve a number of techniques to control the morphology, such as 3D printing, hot pressing, spark plasma sintering and other materials processing methodologies. The electrolytes will be incorporated in electrochemical cells and testing such as cycling and EIS will be will be used to assess changes in performance. Scanning electron microscopy and tomography will provide complementary data.This project falls within the EPSRC Physical Sciences and Energy and decarbonisation research areas.The studentship is funded as part of the Faraday Institution's solid-state battery project, SOLBAT, and will collaborate with the other partners involved in the project. This is a 4-year Faraday Institution Studentship (part of the course fee paid from Oxford Materials funds)
对储能设备的需求从未像现在这样大。锂离子电池由于其高能量密度,在便携式电子产品的发展中扮演着重要的角色。它们是实现交通电气化和摆脱内燃机的关键技术。为了支持向可再生能源的过渡,并使运输完全电气化,将需要新材料和电池技术。例如,固态电解液使锂金属阳极的使用成为可能,显著提高了能源安全性,即扩大了行驶里程。然而,如果要实现锂负极和陶瓷电解液的实用固态电池,仍有重要的挑战需要解决。在锂金属负极固态电池的循环过程中,锂金属被镀并剥离。这给锂-固体电解质界面带来了挑战:如何减少放电(剥离)时界面空洞的形成,以及如何抑制充电(电镀)时树枝晶的形成。我们已经展示了排尿的有害影响,并在理解锂树枝晶生长方面取得了重要进展,这最终导致细胞失效。这一基本认识提高了控制陶瓷电解液表面和整体形态的可能性,作为抑制空洞和树枝晶的一种手段,关键是在实际电流密度和压力下。此次留学活动将研究的正是这些话题。首先,对与锂接触的固体电解质表面进行修饰,以防止空化,显著提高剥离电流密度。其次,对锂枝晶穿透的新认识将被用来控制固体电解质的形态,以实现更高的电流密度,而不会发生枝晶生长和短路。这也有助于理解硫化物基电解液的机理。控制硫化物基固体电解液的表面和体相形态并了解这些因素与锂负极性能之间的关系在科学和技术上都是具有挑战性的。该项目将包括设计和开发新的技术,以制备不同体积和表面形貌的固体电解质,表征它们,制造电池并研究它们的性能。这些结果将被用来产生优化的形貌。该项目将涉及多项控制形貌的技术,如3D打印、热压、放电等离子烧结等材料加工方法。电解液将被整合到电化学电池中,循环和EIS等测试将被用于评估性能的变化。扫描电子显微镜和断层扫描将提供补充数据。该项目属于EPSRC物理科学、能源和脱碳研究领域。该项目是作为法拉第研究所固态电池项目SOLBAT的一部分提供资金的,并将与参与该项目的其他合作伙伴合作。这是一个为期4年的法拉第学院学生奖学金(牛津材料基金支付的课程费用的一部分)
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Electrolyte design for high-performance, sustainable sodium batteries
高性能、可持续钠电池的电解质设计
- 批准号:
DE240100480 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
Targeted electrolyte design for high energy aqueous batteries
高能水系电池的针对性电解质设计
- 批准号:
DP240102353 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
CAREER: Predictive design and control of the electrode/electrolyte interface for improved electrocatalysis
职业:电极/电解质界面的预测设计和控制以改进电催化
- 批准号:
2338917 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
in situ Epigenetic Profiling of Single Cells in Kidney
肾脏单细胞的原位表观遗传分析
- 批准号:
10645605 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Harnessing cooperativity to achieve high-precision in vivo measurements
利用协作性实现高精度体内测量
- 批准号:
10745250 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Clinical, Biochemical, and Microbiological Effects of Constipation Treatment in Patients with Chronic Kidney Disease: A Pilot Feasibility Trial
慢性肾病患者便秘治疗的临床、生化和微生物学效果:初步可行性试验
- 批准号:
10639532 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Rational Electrolyte Design and Engineering for Next-Generation Batteries
下一代电池的合理电解质设计和工程
- 批准号:
FT230100598 - 财政年份:2023
- 资助金额:
-- - 项目类别:
ARC Future Fellowships
CAS: Cooperative Site and Electrolyte Design for Optimizing Interfacial Electrokinetics
CAS:优化界面电动学的协同位点和电解质设计
- 批准号:
2332802 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Self-calibrated ionophore-based ion-selective electrodes for at-home measurements of blood electrolytes
用于家庭测量血液电解质的自校准离子载体离子选择电极
- 批准号:
10592523 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A Low Blood Volume Platform for Recurrent Anticoagulation and Kidney Monitoring during Continuous Renal Replacement Therapy in Critically Ill Children
危重儿童连续肾脏替代治疗期间反复抗凝和肾脏监测的低血容量平台
- 批准号:
10383224 - 财政年份:2022
- 资助金额:
-- - 项目类别: