Effective hamiltonians for anyons on graphs via self-adjoint extensions of the Landau operator

通过 Landau 算子的自伴扩展,图上任意子的有效哈密顿量

基本信息

  • 批准号:
    2765041
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Anyons are (quasi)particles that obey so-called fractional quantum statistics - their statistical properties are neither bosonic nor fermionic. Such particles are known to exist in two- dimensional systems (2D lattices or thin metallic strips) and one-dimensional systems (quantum wires). Much less is known about the behaviour of anyons on networks formed from quantum wires, i.e. on quantum graphs. Formally, we consider a graph as a one-dimensional CW-complex. We form its configuration space, by considering the space of all un-ordered tuples of length n that consist of distinct point Sn is the permutation group. Graph braid group on n strands is defined as the fundamental group.Similarly, one can consider a configuration space of a topological space. Some important special cases areR3 - in three-dimensional space there are only bosons or fermions (sometimes in disguise). The braid group Brn(R3) is simply the permutation group, Sn. R2 - this setting leads to exotic statistics. The nontrivial topology of the configuration space of R2 supports anyons whose fractional statistics is realised in physical models as unitary representations of the planar braid group, Brn(R2). They appear in solid state physics in certain models of superconductors, in fault-tolerant quantum computing and in Chern-Simons theories.Leinaas and Myrheim (1977) show that the dynamics of anyons can be studied by inserting magnetic fluxes in the "holes" of the configuration space. The corresponding hamiltonian is then found via the minimal coupling principle which says that the momentum of kth particle is given by pk + Ak, where Ak is the local magnetic potential. The corresponding hamiltonian, pk2, is called the Landau operator. To solve the time-independent Schrödinger equation, we first need to find the correct gluing conditions for corresponding to situations where i) a particle is on a junction of the graph and ii) two particles come close to each other. The mathematical theory that tells us how to find such gluing conditions is the theory of self-adjoint extensions of symmetric operators. The aim is to look at specific families of graphs, starting with the simplest T-junction and then proceeding to general star graphs, the lasso graph, wheel graphs, etc. The project is open-ended.
任意子是服从所谓分数量子统计的(准)粒子——它们的统计性质既不是玻色子的,也不是费米子的。已知这种粒子存在于二维系统(二维晶格或薄金属条)和一维系统(量子线)中。对于由量子线构成的网络,也就是量子图上的任意子的行为,我们所知甚少。形式上,我们认为图是一维的cw复合体。我们考虑由不同的点Sn构成的所有长度为n的无序元组的空间为置换群,形成了它的位形空间。定义n条链上的图辫群为基群。类似地,我们可以考虑拓扑空间的构形空间。一些重要的特殊情况是——在三维空间中只有玻色子或费米子(有时是伪装的)。编织群Brn(R3)就是简单的排列群Sn。R2——这个设置导致了外来的统计数据。R2位形空间的非平凡拓扑支持其分数统计量在物理模型中被实现为平面编织群Brn(R2)的幺正表示的任意子。它们出现在固态物理、某些超导体模型、容错量子计算和陈-西蒙斯理论中。Leinaas和Myrheim(1977)表明,可以通过在位形空间的“空穴”中插入磁通量来研究任意子的动力学。相应的哈密顿量通过最小耦合原理得到,即第k个粒子的动量由pk + Ak给出,其中Ak是局部磁势。相应的哈密顿算符pk2称为朗道算符。为了求解与时间无关的Schrödinger方程,我们首先需要找到对应于i)一个粒子在图的交界处以及ii)两个粒子彼此靠近的情况的正确粘合条件。告诉我们如何找到这种胶合条件的数学理论是对称算子的自伴随扩展理论。目的是研究特定的图族,从最简单的t形结开始,然后继续到一般的星图、套索图、轮图等。这个项目是开放式的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Spectral theory of relativistic quantum Hamiltonians
相对论量子哈密顿量的谱论
  • 批准号:
    2903825
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
Spatial Quantum Optical Annealer for Spin Hamiltonians
自旋哈密顿量的空间量子光学退火器
  • 批准号:
    10086022
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Preparing Hamiltonians for Quantum Simulation: A Computational Framework for Cartan Decomposition via Lax Dynamics
为量子模拟准备哈密顿量:通过 Lax 动力学进行嘉当分解的计算框架
  • 批准号:
    2309376
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EAGER: QSA: Approximating the Ground States of Non-Stoquastic Hamiltonians Using the Variational Quantum Eigensolver
EAGER:QSA:使用变分量子本征求解器逼近非随机哈密顿量的基态
  • 批准号:
    2037755
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Analysis of Properties of Effective Hamiltonians with Applications
有效哈密顿量的性质分析及其应用
  • 批准号:
    2000191
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Quantum dynamics generated by non-self-adjoint hamiltonians and its applications
非自伴哈密顿量产生的量子动力学及其应用
  • 批准号:
    20K14335
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
EAGER-QAC-QSA: Variational quantum algorithms for transcorrelated electronic-structure Hamiltonians
EAGER-QAC-QSA:互相关电子结构哈密顿量的变分量子算法
  • 批准号:
    2037832
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Colliding quasiparticles to reconstruct their effective Hamiltonians
碰撞准粒子重建其有效哈密顿量
  • 批准号:
    2004995
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Interpreting Vibrational Spectra with Local Mode Model Hamiltonians
用局部模式模型哈密顿量解释振动谱
  • 批准号:
    1566108
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Spectral analysis of relativistic Hamiltonians with a magnetic field
磁场下相对论哈密顿量的谱分析
  • 批准号:
    15K04959
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了